Skip to main content

Structure and Evolution of Plant Centromeres

  • Chapter
  • First Online:
Centromere

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 48))

Abstract

Investigations of centromeric DNA and proteins and centromere structures in plants have lagged behind those conducted with yeasts and animals; however, many attractive results have been obtained from plants during this decade. In particular, intensive investigations have been conducted in Arabidopsis and Gramineae species. We will review our understanding of centromeric components, centromere structures, and the evolution of these attributes of centromeres among plants using data mainly from Arabidopsis and Gramineae species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfenito MR, Birchler JA (1993) Molecular characterization of a maize B chromosome centric sequence. Genetics 135:589–597

    PubMed  CAS  Google Scholar 

  • Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, Yoda K, Radlwimmer B, Ladurner AG, Warburton PE (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148

    PubMed  Google Scholar 

  • Amor DJ, Kalitsis P, Sumer H, Choo KH (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14:359–368

    PubMed  CAS  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize. (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078

    PubMed  CAS  Google Scholar 

  • Ananiev EV, Svitashev S, Wu C, Chamberlin MA, Gordon-Kamm W, Schwartz C, Sturdevant M, Tingey S (2008) Artificial chromosome construction in Zea mays L. In: XX Internat. Congress Genetics, July 11–17, 2008, Berlin, Germany, p. 346

    Google Scholar 

  • Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268

    PubMed  CAS  Google Scholar 

  • Auriche C, Donini P, Ascenzioni F (2001) Molecular and cytological analysis of a 5.5 Mb minichromosome. EMBO Rep 2:102–107

    PubMed  CAS  Google Scholar 

  • Barry A, Bateman M, Howman E, Cancilla M, Tainton K, Irvine D, Saffery R, Choo K (2000) The 10q25 neocentromere and its inactive progenitor have identical primary nucleotide sequence: further evidence for epigenetic modification. Genome Res 10:832–838

    PubMed  CAS  Google Scholar 

  • Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20:91–100

    PubMed  CAS  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    PubMed  CAS  Google Scholar 

  • Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S (1999) A histone-H3-like protein in C. elegans. Nature 401:547–548

    PubMed  CAS  Google Scholar 

  • Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SI (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37:809–819

    PubMed  CAS  Google Scholar 

  • Cardone MF, Alonso A, Pazienza M, Ventura M, Montemurro G, Carbone L, de Jong PJ, Stanyon R, D’Addabbo P, Archidiacono N, She X, Eichler EE, Warburton PE, Rocchi M (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7:R91

    PubMed  Google Scholar 

  • Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet 3:1965–1974

    PubMed  CAS  Google Scholar 

  • Chang SB, Yang TJ, Datema E, van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Lankhorst RK, Jacobsen E, de Jong H (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res 16(7):919–933

    PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    PubMed  CAS  Google Scholar 

  • Cheng Z-J, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672

    PubMed  CAS  Google Scholar 

  • Choo KH (2001) Domain organization at the centromere and neocentromere. Dev Cell 1:165–177

    PubMed  CAS  Google Scholar 

  • Choo KHA (1997) The centromere. Oxford University Press, Oxford

    Google Scholar 

  • Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21:1717–1718

    Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    PubMed  CAS  Google Scholar 

  • Cottarel G, Shero JH, Hieter P, Hegemann JH (1989) A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol Cell Biol 9:3342–3349

    PubMed  CAS  Google Scholar 

  • Dawe RK, Henikoff S (2006) Centromeres put epigenetics in the driver’s seat. Trend in Biochem Sci 31:662–669

    CAS  Google Scholar 

  • Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11:1227–1238

    PubMed  CAS  Google Scholar 

  • Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol 153:F33–F38

    PubMed  CAS  Google Scholar 

  • Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice. (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95:8135–8140

    PubMed  CAS  Google Scholar 

  • Du Y, Dawe RK (2007) Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Res 15:767

    PubMed  CAS  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    PubMed  CAS  Google Scholar 

  • Entani T, Iwano M, Shiba H, Takayama S, Fukui K, Isogai A (1999) Centromeric localization of an S-RNase gene in Petunia hybrida Vilm. Theor Appl Genet 99:391–397

    CAS  Google Scholar 

  • Francki MG (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye. (Secale cereale L.). Genome 44:266–274

    PubMed  CAS  Google Scholar 

  • Fukagawa T, Brown WRA (1997) Efficient conditional mutation of the vertebrate CENP-C gene. Hum Mol Genet 6:2301–2308

    PubMed  CAS  Google Scholar 

  • Fukui KN, Suzuki G, Lagudah ES, Rahman S, Appels R, Yamamoto M, Mukai Y (2001) Physical arrangement of retrotransposon-related repeats in centromeric regions of wheat. Plant Cell Physiol 42:189–196

    PubMed  CAS  Google Scholar 

  • Furuyama S, Biggins S (2007) Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104:14706–14711

    PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    PubMed  CAS  Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 96:14400–14405

    PubMed  CAS  Google Scholar 

  • Gernand D, Demidov D, Houben A (2003) The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet Genome Res 101:172–176

    Google Scholar 

  • Gindullis F, Dechyeva D, Schmidt T (2001a) Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet. (Beta vulgaris) genome analysis. Genome 44:846–855

    CAS  Google Scholar 

  • Gindullis F, Desel C, Galasso I, Schmidt T (2001b) The large-scale organization of the centromeric region in Beta species. Genome Res 11:253–265

    CAS  Google Scholar 

  • Goel S, Raina SN, Ogihara Y (2002) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of nuclear ribosomal DNA in the Phaseolus-Vigna complex. Mol Phylogenet Evol 22:1–19

    PubMed  CAS  Google Scholar 

  • Goshima G, Saitoh S, Yanagida M (1999) Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13:1664–1677

    PubMed  CAS  Google Scholar 

  • Goshima G, Kiyomitsu T, Yoda K, Yanagida M (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160:25–39

    PubMed  CAS  Google Scholar 

  • Hahnenberger KM, Baum MP, Polizzi CM, Carbon J, Clarke L (1989) Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 86:577–581

    PubMed  CAS  Google Scholar 

  • Haizel T, Lim YK, Leitch AR, Moore G (2005) Molecular analysis of holocentric centromeres of Luzula species. Cytogenet Genome Res 109:134–143

    PubMed  CAS  Google Scholar 

  • Han F, Lamb JC, Bircheler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    PubMed  CAS  Google Scholar 

  • Harrington JJ, Bokkelen GV, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    PubMed  CAS  Google Scholar 

  • Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165

    CAS  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  • Heller K, Kilian A, Piatyszek MA, Kleinhofs A (1996) Telomerase activity in plant extracts. Mol Gen Genet 252:342–345

    PubMed  CAS  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Platero JS, van Steensel B (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci USA 97:716–721

    PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Schwarzacher T (2003) Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 11:241–253

    PubMed  CAS  Google Scholar 

  • Hizume M, Shibata F, Maruyama Y, Kondo T (2001) Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc. Chromosoma 110:345–351

    PubMed  CAS  Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9:117–121

    PubMed  CAS  Google Scholar 

  • Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6:554–560

    PubMed  CAS  Google Scholar 

  • Houben A, Guttenbach M, Kress W, Pich U, Schubert I, Schmid M (1995) Immunostaining and interphase arrangement of field bean kinetochores. Chromosome Res 3:27–31

    PubMed  CAS  Google Scholar 

  • Houben A, Leach CR, Verlin D, Rofe R, Timmis JN (1997) A repetitive DNA sequence common to the different B chromosomes of the genus Brachycome. Chromosoma 106:513–519

    PubMed  CAS  Google Scholar 

  • Houben A, Wako T, Furushima-Shimogawara R, Presting G, Kunzel G, Schubert I, Fukui K (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J 18:675–679

    PubMed  CAS  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    PubMed  CAS  Google Scholar 

  • Houben A, Dawe RK, Jiang J, Schubert I (2008) Engineered plant minichromosomes: A bottom-up success. Plant Cell 20:8–10

    PubMed  CAS  Google Scholar 

  • Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035

    PubMed  CAS  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439

    PubMed  CAS  Google Scholar 

  • Itzhaki JE, Barnett MA, MacCarthy AB, Buckle VJ, Brown WR, Porter AC (1992) Targeted breakage of a human chromosome mediated by cloned human telomeric DNA. Nat Genet 2:238–287

    Google Scholar 

  • Jiang J, Nasuda S, Dong F, Scherrer CW, Woo S, Wing RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213

    PubMed  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571-581

    PubMed  CAS  Google Scholar 

  • Kalitsis P, Fowler KJ, Earle E, Hill J, Choo KH (1998) Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc Natl Acad Sci USA 95:1136–1141

    PubMed  CAS  Google Scholar 

  • Kamm A, Schmidt T, Heslop-Harrison JS (1994) Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum. Mol Gen Genet 244:420–425

    PubMed  CAS  Google Scholar 

  • Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis arensa and relationship between Arabidopsis species. Plant Mol Biol 27:853–862

    PubMed  CAS  Google Scholar 

  • Kaszas E, Cande WZ (2000) Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113:3217–3226

    PubMed  CAS  Google Scholar 

  • Kato A, Zheng YZ, Auger DL, Phelps-Durr T, Bauer MJ, Lamb JC, Birchler JA (2005) Minichromosomes derived from the B chromosome of maize. Cytogenet Genome Res 109:156–165

    PubMed  CAS  Google Scholar 

  • Kawabe A, Nasuda S (2005) Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Gen Genomics 272:593–602

    CAS  Google Scholar 

  • Kawabe A, Nasuda S, Charlesworth D (2006) Duplication of centromeric histone H3. (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 174:2021–2032

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Kishii M, Shimizu M, Tsujimoto H (2005) Centromere-specific repetitive sequences from Torenia, a model plant for interspecific fertilization, and whole-mount FISH of its interspecific hybrid embryos. Cytogenet Genome Res 109:228–235

    PubMed  CAS  Google Scholar 

  • Kishii M, Nagaki K, Tsujimoto H (2001) A tandem repetitive sequence located in the centromeric region of common wheat. (Triticum aestivum) chromosomes. Chromosome Res 9:417–428

    PubMed  CAS  Google Scholar 

  • Kondo K, Lavarack PS (1984) A cytotaxonomic study of some Australian species of Drosera L. (Droseraceae). Botanical J Linnean Soc 88:317–333

    Google Scholar 

  • Koornneef M, Van der Veen JH (1983) The trisomics of Arabidopsis thaliana. (L.) Heynh. and the location of linkage groups. Genetica 61:41–46

    Google Scholar 

  • Koshland D, Rutledge L, Fitzgerald-Hayes M, Hartwell LH (1987) A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 48:801–812

    Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    PubMed  CAS  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res 8:285–290

    PubMed  CAS  Google Scholar 

  • Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN (1995) Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica. Chromosoma 103:708–714

    PubMed  CAS  Google Scholar 

  • Lee H, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    PubMed  CAS  Google Scholar 

  • Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    PubMed  CAS  Google Scholar 

  • Liu Z, Yue W, Li D, Wang RR, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456

    PubMed  CAS  Google Scholar 

  • Lo AW, Craig JM, Saffery R, Kalitsis P, Irvine DV, Earle E, Magliano DJ, Choo KH (2001a) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–2096

    CAS  Google Scholar 

  • Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH (2001b) A novel chromatin immunoprecipitation and array. (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–457

    CAS  Google Scholar 

  • Lukaszewski AJ (1995) Chromatid and chromosome type breakage-fusion-bridge cycles in wheat. (Triticum aestiuum L.). Genetics 140:1069–1085

    PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci USA 103:383–388

    PubMed  CAS  Google Scholar 

  • Ma J, Jackson SA (2006) Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 16:251–259

    PubMed  CAS  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Evolutionary history and positional shift of a rice centromere. Genetics 177:1217–1220

    PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298

    PubMed  CAS  Google Scholar 

  • Maluszynsak J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1:159–166

    Google Scholar 

  • Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282

    PubMed  CAS  Google Scholar 

  • Martinez-Zapater J, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:417–423

    CAS  Google Scholar 

  • McClintock B (1939) The behavior in successive muclear divisions of a chromosome broken at meiosis. Genetics 25:405–416

    CAS  Google Scholar 

  • Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613

    PubMed  CAS  Google Scholar 

  • Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839

    CAS  Google Scholar 

  • Miniou P, Jeanpierre M, Bourc’his D, Coutinho Barbosa AC, Blanquet V, Viegas-Peuignot E (1997) Alpha-satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Hum Genet 99:738–745

    PubMed  CAS  Google Scholar 

  • Mole-Bajer J, Bajer AS, Zinkowski RP, Balczon RD, Brinkley BR (1990) Autoantibodies from a patient with scleroderma CREST recognized kinetochores of the higher plant Haemanthus. Proc Natl Acad Sci USA 87:3599–3603

    PubMed  CAS  Google Scholar 

  • Moore LL, Roth MB (2001) HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J Cell Biol 153:1199–1208

    PubMed  CAS  Google Scholar 

  • Murata M, Nakata N, Yasumuro Y (1992) Origin and molecular structure of a midget chromosome in a common wheat carrying rye cytoplasm. Chromosoma 102:27–31

    CAS  Google Scholar 

  • Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69:361–370

    PubMed  CAS  Google Scholar 

  • Murata M, Shibata F, Yokota E (2006) The origin, meiotic behavior, and transmission of a novel minichromosome in Arabidopsis thaliana. Chromosoma 115:311–319

    PubMed  Google Scholar 

  • Murata M, Yokota E, Shibata F, Kashihara K (2008) Functional analysis of the Arabidopsis centromere by T-DNA insertion-induced centromere breakage. Proc Natl Acad Sci USA 105:7511–7516

    PubMed  CAS  Google Scholar 

  • Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305:189–193

    PubMed  CAS  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Research 13:195–203

    PubMed  CAS  Google Scholar 

  • Nagaki K, Tsujimoto H, Sasakuma T (1998) A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions. Chromosome Res 6:295–302

    PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    PubMed  CAS  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005a) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:886–1893

    Google Scholar 

  • Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005b) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855

    CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo T (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    PubMed  CAS  Google Scholar 

  • Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761

    PubMed  CAS  Google Scholar 

  • Nonomura KI, Kurata N (1999) Organization of the 1.9-kb repeat unit RCE1 in the centromeric region of rice chromosomes. Mol Gen Genet 261:1–10

    PubMed  CAS  Google Scholar 

  • Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1. (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9:105–120

    PubMed  CAS  Google Scholar 

  • Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153:1209–1226

    PubMed  CAS  Google Scholar 

  • Ogura Y, Shibata F, Sato H, Murata M (2004) Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes Genet Syst 79:139–144

    PubMed  CAS  Google Scholar 

  • Okada M, Cheeseman I, Hori T, Okawa K, McLeod I, Yates Jr, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457

    PubMed  CAS  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    PubMed  CAS  Google Scholar 

  • Page BT, Wanous MK, Birchler JA (2001) Characterization of a maize chromosome 4 centromeric sequence. Evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159:291–302

    PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein. (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA 88:3734–3738

    PubMed  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494

    PubMed  CAS  Google Scholar 

  • Pelissier T, Tutois S, Deragon JM, Tourmente S, Genestier S, Picard G (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29:441–452

    PubMed  CAS  Google Scholar 

  • Pimpinelli S, Goday C (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet 5:310–315

    PubMed  CAS  Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728

    PubMed  CAS  Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET. (QRT) genes. Science 264:1458–1460

    PubMed  CAS  Google Scholar 

  • Saffery R, Wong LH, Irvine DV, Bateman MA, Griffiths B, Cutts SM, Cancilla MR, Cendron AC, Stafford AJ, Choo KH (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc Natl Acad Sci USA 98:5705–5710

    PubMed  CAS  Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA, Ratrie Hr, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125

    PubMed  CAS  Google Scholar 

  • Sato H, Shibata F, Murata M (2005) Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosome Res 13:827–834

    PubMed  CAS  Google Scholar 

  • Saunders VA, Houben A (2001) The pericentromeric heterochromatin of the grass Zingeria biebersteiniana. (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome 44:955–961

    PubMed  CAS  Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1996) High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from wild beet species Beta procumbens. Plant Mol Biol 30:1099–1114

    PubMed  CAS  Google Scholar 

  • Schmidt T, Metzlaff M (1991) Cloning and characterization of a Beta vulgaris satellite DNA family. Gene 101: 247–250

    PubMed  CAS  Google Scholar 

  • Schubert I (2001) Alteration of chromosome numbers by generation of minichromosomes – is there a lower limit of chromosome size for stable segregation. Cytogenet Cell Genet 93:175–181

    PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    PubMed  CAS  Google Scholar 

  • Sears ER, Camara A (1952) A transmissible dicentric chromosome. Genetics 37:125–135

    PubMed  CAS  Google Scholar 

  • Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970

    PubMed  CAS  Google Scholar 

  • Starr DA, Williams BC, Li Z, Etemad-Moghadam B, Dawe RK, Goldberg ML (1997) Conservation of the centromere/kinetochore protein ZW10. J Cell Biol 138:1289–1301

    PubMed  CAS  Google Scholar 

  • Sullivan B, Schwartz S (1995) Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet 4:2189–2197

    PubMed  CAS  Google Scholar 

  • Sullivan BA (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228

    PubMed  CAS  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    PubMed  CAS  Google Scholar 

  • Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194

    PubMed  CAS  Google Scholar 

  • Suzuki T, Ide N, Tanaka I (1997) Immunocytochemical visualization of the centromeres during male and female meiosis in Lilium longiflorum. Chromosoma 106:435–445

    PubMed  CAS  Google Scholar 

  • Takahashi K, Yamada H, Yanagida M (1994) Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 5:1145–1158

    PubMed  CAS  Google Scholar 

  • Talbert PB, Bryson TD, Henikoff S (2004) Adaptive evolution of centromere proteins in plants and animals. J Biol 3:18

    PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    PubMed  CAS  Google Scholar 

  • Tek AL, Jiang J (2004) The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma 113:77–83

    PubMed  CAS  Google Scholar 

  • ten Hoopen R, Manteuffel R, Dolezel J, Malysheva L, Schubert I (2000) Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109:482–489

    PubMed  CAS  Google Scholar 

  • ten Hoopen R, Schleker T, Manteuffel R, Schubert I (2002) Transient CENP-E-like kinetochore proteins in plants. Chromosome Res 10:561–570

    PubMed  CAS  Google Scholar 

  • The Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    PubMed  CAS  Google Scholar 

  • Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561

    PubMed  CAS  Google Scholar 

  • Viinikka Y (1985) Identification of the chromosome showing neocentric activity in rye. Theor Appl Genet 70:66–71

    Google Scholar 

  • Voullaire LE, Slater HR, Petrovic V, Choo KHA (1993) A functional marker centromere with no detectable alpha-satellite, satellite-III, or CENP-B protein-activation of a latent centromere. American J Human Genet 52:1153–1163

    CAS  Google Scholar 

  • Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA 86:9394–9398

    PubMed  CAS  Google Scholar 

  • Wu J, Yamagata H, Hayashi-Tsugane M, Hijishita S, Fujisawa M, Shibata M, Ito Y, Nakamura M, Sakaguchi M, Yoshihara R, Kobayashi H, Ito K, Karasawa W, Yamamoto M, Saji S, Katagiri S, Kanamori H, Namiki N, Katayose Y, Matsumoto T, Sasaki T (2004) Composition and structure of the centromeric region of rice chromosome 8. Plant Cell 16:967–976

    PubMed  CAS  Google Scholar 

  • Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133

    PubMed  CAS  Google Scholar 

  • Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    PubMed  CAS  Google Scholar 

  • Yang CH, Tomkiel J, Saitoh H, Johnson DH, Earnshaw WC (1996) Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol Cell Biol 16:3576–3586

    PubMed  CAS  Google Scholar 

  • Yu HG, Hiatt EN, Chan A, Sweeney M, Dawe RK (1997) Neocentromere-mediated chromosome movement in maize. J Cell Biol 139:831–840

    PubMed  CAS  Google Scholar 

  • Yu HG, Muszynski MG, Dawe RK (1999) The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J Cell Biol 145:425–435

    PubMed  CAS  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929

    PubMed  CAS  Google Scholar 

  • Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155:1147–1157

    PubMed  CAS  Google Scholar 

  • Zhang W, Lee HR, Koo DH, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34

    PubMed  Google Scholar 

  • Zhang X, Li X, Marshall JB, Zhong CX, Dawe RK (2005) Phosphoserines on maize centromeric histone H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. Plant Cell 17:572–583

    PubMed  CAS  Google Scholar 

  • Zhang Y, Huang Y, Zhang L, Li Y, Lu T, Lu Y, Feng Q, Zhao Q, Cheng Z, Xue Y, Wing RA, Han B (2004) Structural features of the rice chromosome 4 centromere. Nucl Acids Res 32:2023–2030

    PubMed  CAS  Google Scholar 

  • Zheng YZ, Roseman RR, Carlson WR (1999) Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics 153:1435–1444

    PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiming Jiang or Minoru Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagaki, K., Walling, J., Hirsch, C., Jiang, J., Murata, M. (2009). Structure and Evolution of Plant Centromeres. In: Ugarkovic, D. (eds) Centromere. Progress in Molecular and Subcellular Biology, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00182-6_6

Download citation

Publish with us

Policies and ethics