Skip to main content

Patchwork Neuro-fuzzy System with Hierarchical Domain Partition

  • Chapter
Computer Recognition Systems 3

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 57))

Summary

The paper presents the patchwork hierarchical domain partition in the neuro-fuzzy system with parameterized consequences. The hierarchical domain partition has the advantages of grid partition and clustering. It avoids the curse of dimensionality and reduces the occurrence of areas with low membership to all regions. The paper depicts the iterative hybrid procedure of hierarchical split. The splitting procedure estimates the best way of creating of the new region: (1) based on finding and splitting the region with the highest contribution to the error of the system or (2) creation of patch region for the highest error area. The paper presents the results of experiments on real life and synthetic datasets. This approach can produce neuro-fuzzy inference systems with better generalisation ability and subsequently lower error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberto, M., Almeida, A.: Sistema hĂ­brido neuro-fuzzy-genĂ©tico para mineração automĂĄtica de dados. Master’s thesis, PontifĂ­ca Universidade CatĂłlica do Rio de Janeiro (2004)

    Google Scholar 

  2. Basak, J., Krishnapuram, R.: Interpretable hierarchical clustering by constructing an unsupervised decision tree. IEEE Transactions on Knowledge and Data Engineering 17(1), 121–132 (2005)

    Article  Google Scholar 

  3. Edward, G., Box, P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated (1976)

    Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  5. Czekalski, P.: Evolution-fuzzy rule based system with parameterized consequences. International Journal of Applied Mathematics and Computer Science 16(3), 373–385 (2006)

    MATH  MathSciNet  Google Scholar 

  6. CzogaƂa, E., ĆÈ©ski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzziness and Soft Computing. Physica-Verlag, A Springer-Verlag Company (2000)

    Google Scholar 

  7. Jang, J.-S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23, 665–684 (1993)

    Article  Google Scholar 

  8. ĆÈ©ski, J.: Systemy neuronowo-rozmyte. Wydawnictwa Naukowo-Techniczne, Warszawa (2008)

    Google Scholar 

  9. ĆÈ©ski, J., CzogaƂa, E.: A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and selected applications. BUSEFAL 71, 72–81 (1997)

    Google Scholar 

  10. ĆÈ©ski, J., CzogaƂa, E.: A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and selected applications. Fuzzy Sets and Systems 108(3), 289–297 (1999)

    Article  MathSciNet  Google Scholar 

  11. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  12. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research 2, 1–32 (1994)

    MATH  Google Scholar 

  13. Nelles, O., Isermann, R.: Basis function networks for interpolation of local linear models. In: Proceedings of the 35th IEEE Conference on Decision and Control, vol. 1, pp. 470–475 (1996)

    Google Scholar 

  14. Nelles, O., Fink, A., Babuơka, R., Setnes, M.: Comparison of two construction algorithms for Takagi-Sugeno fuzzy models. International Journal of Applied Mathematics and Computer Science 10(4), 835–855 (2000)

    MATH  Google Scholar 

  15. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  16. Quinlan, J.R.: Learning with continuous classes. In: Adams, Sterling (eds.) AI 1992, Singapore, pp. 343–348 (1992)

    Google Scholar 

  17. Quinlan, J.R.: Combining instance-based and model-based learning. In: Utgoff (ed.) ML 1993, San Mateo (1993)

    Google Scholar 

  18. Rastogi, R., Shim, K.: PUBLIC: A decision tree classifier that integrates building and pruning. Data Mining and Knowledge Discovery 4(4), 315–344 (2000)

    Article  MATH  Google Scholar 

  19. Rutkowski, L., CpaƂka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14(3), 554–574 (2003)

    Article  Google Scholar 

  20. SimiƄski, K.: Neuro-fuzzy system with hierarchical partition of input domain. Studia Informatica 29(4A (80)) (2008)

    Google Scholar 

  21. SimiƄski, K.: Two ways of domain partition in fuzzy inference system with parametrized consequences: Clustering and hierarchical split. In: OWD 2008, X International PhD Workshop, pp. 103–108 (2008)

    Google Scholar 

  22. de Souza, F.J., Vellasco, M.B.R., Pacheco, M.A.C.: Load forecasting with the hierarchical neuro-fuzzy binary space partitioning model. Int. J. Comput. Syst. Signal 3(2), 118–132 (2002)

    Google Scholar 

  23. de Souza, F.J., Vellasco, M.M.R., Pacheco, M.A.C.: Hierarchical neuro-fuzzy quadtree models. Fuzzy Sets and Systems 130(2), 189–205 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man and Cybernetics 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  26. Wang, Y., Witten, I.H.: Inducing model trees for continuous classes. In: Proc. of Poster Papers, 9th European Conference on Machine Learning, Prague, Czech Republic (April 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

SimiƄski, K. (2009). Patchwork Neuro-fuzzy System with Hierarchical Domain Partition. In: Kurzynski, M., Wozniak, M. (eds) Computer Recognition Systems 3. Advances in Intelligent and Soft Computing, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93905-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-93905-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-93904-7

  • Online ISBN: 978-3-540-93905-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics