Skip to main content

Coevolutionary Principles

  • Reference work entry
Handbook of Natural Computing

Abstract

Coevolutionary algorithms approach problems for which no function for evaluating potential solutions is present or known. Instead, algorithms rely on the aggregation of outcomes from interactions among evolving entities in order to make selection decisions. Given the lack of an explicit yardstick, understanding the dynamics of coevolutionary algorithms, judging whether a given algorithm is progressing, and designing effective new algorithms present unique challenges unlike those faced by optimization or evolutionary algorithms. The purpose of this chapter is to provide a foundational understanding of coevolutionary algorithms and to highlight critical theoretical and empirical work done over the last two decades. This chapter outlines the ends and means of coevolutionary algorithms: what they are meant to find, and how they should find it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angeline PJ, Pollack JB (1993) Competitive environments evolve better solutions for complex tasks. In: Proceedings of the 5th international conference on genetic algorithms ICGA-1993. Urbana-Champaign, IL, pp 264–270

    Google Scholar 

  • Axelrod R (1989) The evolution of strategies in the iterated prisoner's dilemma. In: Davis L (ed) Genetic algorithms and simulated annealing. Morgan Kaufmann, San Francisco, CA, pp 32–41

    Google Scholar 

  • Bader-Natal A, Pollack JB (2004) A population-differential method of monitoring success and failure in coevolution. In: Proceedings of the genetic and evolutionary computation conference, GECCO-2004. Lecture notes in computer science, vol 3102. Springer, Berlin, pp 585–586

    Google Scholar 

  • Barbosa H (1999) A coevolutionary genetic algorithm for constrained optimization. In: Proceedings of the congress on evolutionary computation, CEC 1999. IEEE Press, Washington, DC

    Google Scholar 

  • Barricelli N (1963) Numerical testing of evolution theories. Part II. Preliminary tests of performance. Symbiogenesis and terrestrial life. Acta Biotheor 16(3–4):99–126

    Article  Google Scholar 

  • Blumenthal HJ, Parker GB (2004) Punctuated anytime learning for evolving multi-agent capture strategies. In: Proceedings of the congress on evolutionary computation, CEC 2004. IEEE Press, Washington, DC

    Google Scholar 

  • Branke J, Rosenbusch J (2008) New approaches to coevolutionary worst-case optimization. In: Parallel problem solving from nature, PPSN-X, Lecture notes in computer science, vol 5199. Springer, Berlin, pp 144–153

    Chapter  Google Scholar 

  • Bucci A (2007) Emergent geometric organization and informative dimensions in coevolutionary algorithms. Ph.D. thesis, Michtom School of Computer Science, Brandeis University, Waltham, MA

    Google Scholar 

  • Bucci A, Pollack JB (2002) Order-theoretic analysis of coevolution problems: coevolutionary statics. In: Langdon WB et al. (eds) Genetic and evolutionary computation conference workshop: understanding coevolution. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Bucci A, Pollack JB (2003a) Focusing versus intransitivity: geometrical aspects of coevolution. In: Cantú-Paz E et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2003. Springer, Berlin

    Google Scholar 

  • Bucci A, Pollack JB (2003b) A mathematical framework for the study of coevolution. In: De Jong KA et al. (eds) Foundations of genetic algorithms workshop VII. Morgan Kaufmann, San Francisco, CA, pp 221–235

    Google Scholar 

  • Bucci A, Pollack JB (2005) On identifying global optima in cooperative coevolution. In: Beyer HG et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2005. ACM Press, New York

    Google Scholar 

  • Bucci A, Pollack JB, De Jong ED (2004) Automated extraction of problem structure. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2004, Lecture notes in computer science, vol 3102. Springer, Berlin, pp 501–512

    Google Scholar 

  • Bull L (1997) Evolutionary computing in multi-agent environments: partners. In: Baeck T (ed) Proceedings of the 7th international conference on genetic algorithms. Morgan Kaufmann, San Francisco, CA, pp 370–377

    Google Scholar 

  • Bull L (1998) Evolutionary computing in multi-agent environments: operators. In: Wagen D, Eiben AE (eds) Proceedings of the 7th international conference on evolutionary programming. Springer, Berlin, pp 43–52

    Google Scholar 

  • Bull L (2001) On coevolutionary genetic algorithms. Soft Comput 5(3):201–207

    Article  MATH  Google Scholar 

  • Bull L (2005a) Coevolutionary species adaptation genetic algorithms: a continuing saga on coupled fitness landscapes. In: Capcarrere M et al. (eds) Proceedings of the 8th European conference on advances in artificial life, ECAL 2005. Springer, Berlin, pp 845–853

    Google Scholar 

  • Bull L (2005b) Coevolutionary species adaptation genetic algorithms: growth and mutation on coupled fitness landscapes. In: Proceedings of the congress on evolutionary computation, CEC 2005. IEEE Press, Washington, DC

    Google Scholar 

  • Cartlidge J, Bullock S (2002) Learning lessons from the common cold: how reducing parasite virulence improves coevolutionary optimization. In: Proceedings of the congress on evolutionary computation, CEC 2002. IEEE Press, Washington, DC, pp 1420–1425

    Google Scholar 

  • Cartlidge J, Bullock S (2003) Caring versus sharing: how to maintain engagement and diversity in coevolving populations. In: Banzhaf W et al. (eds) Proceedings of the 7th European conference on advances in artificial life, ECAL 2003, Lecture notes in computer science, vol 2801. Springer, Berlin, pp 299–308

    Google Scholar 

  • Cartlidge J, Bullock S (2004a) Combating coevolutionary disengagement by reducing parasite virulence. Evolut Comput 12(2):193–222

    Article  Google Scholar 

  • Cartlidge J, Bullock S (2004b) Unpicking tartan CIAO plots: understanding irregular co-evolutionary cycling. Adapt Behav 12(2):69–92

    Article  Google Scholar 

  • Chellapilla K, Fogel DB (1999) Evolving neural networks to play checkers without expert knowledge. IEEE Trans Neural Networks 10(6):1382–1391

    Article  Google Scholar 

  • Cliff D, Miller GF (1995) Tracking the red queen: measurements of adaptive progress in co-evolutionary simulations. In: Proceedings of the 3rd European conference on advances in artificial life, ECAL 1995. Lecture notes in computer science, vol 929. Springer, Berlin, pp 200–218

    Google Scholar 

  • De Jong KA (1992) Genetic algorithms are not function optimizers. In: Whitley LD (ed) Foundations of genetic algorithms II. Morgan Kaufmann, San Francisco, CA, pp 5–17

    Google Scholar 

  • De Jong ED (2004a) The incremental Pareto-coevolution archive. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2004, Lecture notes in computer science, vol 3102. Springer, Berlin, pp 525–536

    Google Scholar 

  • De Jong ED (2004b) Intransitivity in coevolution. In: Yao X et al. (eds) Parallel problem solving from nature, PPSN-VIII, Birmingham, UK, Lecture notes in computer science, vol 3242. Springer, Berlin, pp 843–851

    Chapter  Google Scholar 

  • De Jong ED (2004c) Towards a bounded Pareto-coevolution archive. In: Proceedings of the congress on evolutionary computation, CEC 2004. IEEE Press, Washington, DC, pp 2341–2348

    Google Scholar 

  • De Jong ED (2005) The MaxSolve algorithm for coevolution. In: Beyer HG et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2005. ACM Press, New York

    Google Scholar 

  • De Jong ED (2007) Objective fitness correlation. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2007. ACM Press, New York, pp 440–447

    Google Scholar 

  • De Jong ED, Bucci A (2006) DECA: dimension extracting coevolutionary algorithm. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2006. ACM Press, New York

    Google Scholar 

  • De Jong ED, Bucci A (2007) Objective set compression: test-based problems and multiobjective optimization. In: Multiobjective problem solving from nature: from concepts to applications, Natural Computing Series. Springer, Berlin

    Google Scholar 

  • De Jong ED, Pollack JB (2004) Ideal evaluation from coevolution. Evolut Comput 12(2):159–192

    Article  Google Scholar 

  • Ficici SG (2004) Solution concepts in coevolutionary algorithms. Ph.D. thesis, Department of Computer Science, Brandeis University, Waltham, MA

    Google Scholar 

  • Ficici SG, Pollack JB (1998) Challenges in coevolutionary learning: arms-race dynamics, open-endedness, and mediocre stable states. In: Adami C et al. (eds) Artificial life VI proceedings. MIT Press, Cambridge, MA, pp 238–247

    Google Scholar 

  • Ficici SG, Pollack JB (2000a) Effects of finite populations on evolutionary stable strategies. In: Whitley D et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2000. Morgan Kaufmann, San Francisco, CA, pp 880–887

    Google Scholar 

  • Ficici SG, Pollack JB (2000b) Game–theoretic investigation of selection methods used in evolutionary algorithms. In: Whitley D (ed) Proceedings of the 2000 congress on evolutionary computation, IEEE Press, Washington, DC, pp 880–887

    Google Scholar 

  • Ficici SG, Pollack JB (2001) Pareto optimality in coevolutionary learning. In: Proceedings of the 6th European conference on advances in artificial life, ECAL 2001. Springer, London, pp 316–325

    Google Scholar 

  • Ficici SG, Pollack JB (2003) A game-theoretic memory mechanism for coevolution. In: Cantú-Paz E et al. (eds) Genetic and evolutionary computation conference, GECCO 2003. Springer, Berlin, pp 286–297

    Chapter  Google Scholar 

  • Floreano D, Nolfi S (1997) God save the red queen! competition in co-evolutionary robotics. In: Koza JR et al. (eds) Proceedings of the 2nd genetic programming conference, GP 1997. Morgan Kaufmann, San Francisco, CA, pp 398–406

    Google Scholar 

  • Friedman D (1998) On economic applications of evolutionary game theory. J Evol Econ 8:15–43

    Article  Google Scholar 

  • Funes P, Pollack JB (2000) Measuring progress in coevolutionary competition. In: From animals to animats 6: Proceedings of the 6th international conference on simulation of adaptive behavior. MIT Press, Cambridge, MA, pp 450–459

    Google Scholar 

  • Funes P, Pujals E (2005) Intransitivity revisited coevolutionary dynamics of numbers games. In: Proceedings of the conference on genetic and evolutionary computation, GECCO 2005. ACM Press, New York, pp 515–521

    Google Scholar 

  • Hillis WD (1990) Co-evolving parasites improve simulated evolution as an optimization procedure. In: CNLS '89: Proceedings of the 9th international conference of the center for nonlinear studies on self-organizing, collective, and cooperative phenomena in natural and artificial computing networks on emergent computation. North-Holland Publishing Co., Amsterdam, pp 228–234

    Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Horn J (1995) The nature of niching: genetic algorithms and the evolution of optimal, cooperative populations. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL

    Google Scholar 

  • Husbands P, Mill F (1991) Simulated coevolution as the mechanism for emergent planning and scheduling. In: Belew R, Booker L (eds) Proceedings of the fourth international conference on genetic algorithms, Morgan Kaufmann, San Francisco, CA, pp 264–270

    Google Scholar 

  • Igel C, Toussaint M (2003) On classes of functions for which no free lunch results hold. Inform Process Lett 86(6):317–321

    Article  MathSciNet  MATH  Google Scholar 

  • Jansen T, Wiegand RP (2003a) Exploring the explorative advantage of the CC (1+1) EA. In: Proceedings of the 2003 genetic and evolutionary computation conference. Springer, Berlin

    Google Scholar 

  • Jansen T, Wiegand RP (2003b) Sequential versus parallel cooperative coevolutionary (1+1) EAs. In: Proceedings of the congress on evolutionary computation, CEC 2003. IEEE Press, Washington, DC

    Google Scholar 

  • Jansen T, Wiegand RP (2004) The cooperative coevolutionary (1+1) EA. Evolut Comput 12(4):405–434

    Article  Google Scholar 

  • JaÅ›kowski W, Wieloch B, Krawiec K (2008) Fitnessless coevolution. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2008. ACM Press, New York, pp 355–365

    Google Scholar 

  • Jensen MT (2001) Robust and flexible scheduling with evolutionary computation. Ph.D. thesis, Department of Computer Science, University of Aarhus, Denmark

    Google Scholar 

  • Juillé H, Pollack JB (1998) Coevolving the ideal trainer: application to the discovery of cellular automata rules. In: Koza JR et al. (eds) Proceedings of the 3rd genetic programming conference, GP 1998. Morgan Kaufmann, San Francisco, CA, pp 519–527

    Google Scholar 

  • Kauffman S, Johnson S (1991) Co-evolution to the edge of chaos: coupled fitness landscapes, poised states and co-evolutionary avalanches. In: Langton C et al. (eds) Artificial life II proceedings, vol 10. Addison-Wesley, Reading, MA, pp 325–369

    Google Scholar 

  • Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans Evolut Comput 8(2):170–182

    Article  Google Scholar 

  • Liekens A, Eikelder H, Hilbers P (2003) Finite population models of co-evolution and their application to haploidy versus diploidy. In: Cantú-Paz E et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2003. Springer, Berlin, pp 344–355

    Google Scholar 

  • Luke S, Wiegand RP (2003) Guaranteeing coevolutionary objective measures. In: De Jong KA et al. (eds) Foundations of genetic algorithms VII, Morgan Kaufmann, San Francisco, CA, pp 237–251

    Google Scholar 

  • Maynard-Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Miller JH (1996) The coevolution of automata in the repeated prisoner's dilemma. J Econ Behav Organ 29(1):87–112

    Article  Google Scholar 

  • Monroy GA, Stanley KO, Miikkulainen R (2006) Coevolution of neural networks using a layered Pareto archive. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2006. ACM Press, New York, pp 329–336

    Google Scholar 

  • Noble J, Watson RA (2001) Pareto coevolution: using performance against coevolved opponents in a game as dimensions for Pareto selection. In: Spector L et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2001. Morgan Kaufmann, San Francisco, CA, pp 493–500

    Google Scholar 

  • Oliehoek FA, De Jong ED, Vlassis N (2006) The parallel Nash memory for asymmetric games. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2006. ACM Press, New York, pp 337–344

    Google Scholar 

  • Oliveto P, He J, Yao X (2007) Time complexity of evolutionary algorithms for combinatorial optimization: a decade of results. Int J Autom Comput 4(3): 281–293

    Article  Google Scholar 

  • Olsson B (2001) Co-evolutionary search in asymmetric spaces. Inform Sci 133(3–4):103–125

    Article  MATH  Google Scholar 

  • Osborne MJ, Rubinstein A (1994) A course in game theory. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Pagie L, Hogeweg P (2000) Information integration and red queen dynamics in coevolutionary optimization. In: Proceedings of the congress on evolutionary computation, CEC 2000. IEEE Press, Piscataway, NJ, pp 1260–1267

    Google Scholar 

  • Pagie L, Mitchell M (2002) A comparison of evolutionary and coevolutionary search. Int J Comput Intell Appl 2(1):53–69

    Article  Google Scholar 

  • Panait L (2006) The analysis and design of concurrent learning algorithms for cooperative multiagent systems. Ph.D. thesis, George Mason University, Fairfax, VA

    Google Scholar 

  • Panait L, Luke S (2002) A comparison of two competitive fitness functions. In: Langdon WB et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2002. Morgan Kaufmann, San Francisco, CA, pp 503–511

    Google Scholar 

  • Panait L, Luke S (2005) Time-dependent collaboration schemes for cooperative coevolutionary algorithms. In: AAAI fall symposium on coevolutionary and coadaptive systems. AAAI Press, Menlo Park, CA

    Google Scholar 

  • Panait L, Luke S (2006) Selecting informative actions improves cooperative multiagent learning. In: Proceedings of the 5th international joint conference on autonomous agents and multi agent systems, AAMAS 2006. ACM Press, New York

    Google Scholar 

  • Panait L, Wiegand RP, Luke S (2003) Improving coevolutionary search for optimal multiagent behaviors. In: Gottlob G, Walsh T (eds) Proceedings of the 18th international joint conference on artificial intelligence, IJCAI 2003. Morgan Kaufmann, San Francisco, CA, pp 653–658

    Google Scholar 

  • Panait L, Wiegand RP, Luke S (2004) A sensitivity analysis of a cooperative coevolutionary algorithm biased for optimization. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2004. Lecture notes in computer science, vol 3102. Springer, Berlin, pp 573–584

    Google Scholar 

  • Panait L, Luke S, Harrison JF (2006a) Archive-based cooperative coevolutionary algorithms. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2006. ACM Press, New York

    Google Scholar 

  • Panait L, Luke S, Wiegand RP (2006b) Biasing coevolutionary search for optimal multiagent behaviors. IEEE Trans Evolut Comput 10(6):629–645

    Article  Google Scholar 

  • Panait L, Sullivan K, Luke S (2006c) Lenience towards teammates helps in cooperative multiagent learning. In: Proceedings of the 5th international joint conference on autonomous agents and multi agent systems, AAMAS 2006. ACM Press, New York

    Google Scholar 

  • Paredis J (1997) Coevolving cellular automata: be aware of the red queen. In: Bäck T (ed) Proceedings of the 7th international conference on genetic algorithms, ICGA 1997. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Parker GB, Blumenthal HJ (2003) Comparison of sample sizes for the co-evolution of cooperative agents. In: Proceedings of the congress on evolutionary computation, CEC 2003. IEEE Press, Washington, DC

    Google Scholar 

  • Popovici E (2006) An analysis of two-population coevolutionary computation. Ph.D. thesis, George Mason University, Fairfax, VA

    Google Scholar 

  • Popovici E, De Jong KA (2004) Understanding competitive co-evolutionary dynamics via fitness landscapes. In: Luke S (ed) AAAI fall symposium on artificial multiagent learning. AAAI Press, Menlo Park, CA

    Google Scholar 

  • Popovici E, De Jong KA (2005a) A dynamical systems analysis of collaboration methods in cooperative co-evolution. In: AAAI fall symposium series co-evolution workshop. AAAI Press, Menlo Park, CA

    Google Scholar 

  • Popovici E, De Jong KA (2005b) Relationships between internal and external metrics in co-evolution. In: Proceedings of the congress on evolutionary computation, CEC 2005. IEEE Press, Washington, DC

    Google Scholar 

  • Popovici E, De Jong KA (2005c) Understanding cooperative co-evolutionary dynamics via simple fitness landscapes. In: Beyer HG et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2005. ACM Press, New York

    Google Scholar 

  • Popovici E, De Jong KA (2009) Monotonicity versus performance in co-optimization. In: Foundations of genetic algorithms X. ACM Press, New York

    Google Scholar 

  • Potter M (1997) The design and analysis of a computational model of cooperative coevolution. Ph.D. thesis, Computer Science Department, George Mason University

    Google Scholar 

  • Potter M, De Jong KA (1994) A cooperative coevolutionary approach to function optimization. In: Parallel problem solving from nature, PPSN-III, Jerusalem, Israel. Springer, Berlin, pp 249–257

    Google Scholar 

  • Potter MA, De Jong KA (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolut Comput 8(1):1–29

    Article  Google Scholar 

  • Rosin CD (1997) Coevolutionary search among adversaries. Ph.D. thesis, University of California, San Diego, CA

    Google Scholar 

  • Rosin CD, Belew RK (1995) Methods for competitive co-evolution: finding opponents worth beating. In: Proceedings of the 6th international conference on genetic algorithms, ICGA 1995. Morgan Kaufmann, San Francisco, CA, pp 373–381

    Google Scholar 

  • Rosin CD, Belew RK (1997) New methods for competitive coevolution. Evolut Comput 5(1):1–29

    Article  Google Scholar 

  • Schmitt LM (2003a) Coevolutionary convergence to global optima. In: Cantú-Paz E et al. (eds) Genetic and evolutionary computation conference, GECCO 2003. Springer, Berlin, pp 373–374

    Chapter  Google Scholar 

  • Schmitt LM (2003b) Theory of coevolutionary genetic algorithms. In: Guo M et al. (eds) International symposium on parallel and distributed processing and applications, ISPA 2003. Springer, Berlin, pp 285–293

    Google Scholar 

  • Schumacher C, Vose M, Whitley L (2001) The no free lunch and description length. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2001. Morgan Kaufmann, San Francisco, CA, pp 565–570

    Google Scholar 

  • Service TC (2009) Unbiased coevolutionary solution concepts. In: Foundations of genetic algorithms X. ACM Press, New York

    Google Scholar 

  • Service TC, Tauritz DR (2008a) Co-optimization algorithms. In: Keijzer M et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2008. ACM Press, New York, pp 387–388

    Chapter  Google Scholar 

  • Service TC, Tauritz DR (2008b) A no-free-lunch framework for coevolution. In: Keijzer M et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2008. ACM Press, New York, pp 371–378

    Chapter  Google Scholar 

  • Sims K (1994) Evolving 3D morphology and behaviour by competition. In: Brooks R, Maes P (eds) Artificial life IV proceedings. MIT Press, Cambridge, MA, pp 28–39

    Google Scholar 

  • Spears W (1994) Simple subpopulation schemes. In: Proceedings of the 1994 evolutionary programming conference. World Scientific, Singapore

    Google Scholar 

  • Stanley KO (2004) Efficient evolution of neural networks through complexification. Ph.D. thesis, The University of Texas at Austin, Austin, TX

    Google Scholar 

  • Stanley KO, Miikkulainen R (2002a) Continual coevolution through complexification. In: Langdon WB et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2002. Morgan Kaufmann, San Francisco, CA, pp 113–120

    Google Scholar 

  • Stanley KO, Miikkulainen R (2002b) The dominance tournament method of monitoring progress in coevolution. In: Langdon WB et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2002. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Stanley KO, Miikkulainen R (2004) Competitive coevolution through evolutionary complexification. J Arti Intell Res 21:63–100

    Google Scholar 

  • Stuermer P, Bucci A, Branke J, Funes P, Popovici E (2009) Analysis of coevolution for worst-case optimization. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2009. ACM Press, New York

    Google Scholar 

  • Subbu R, Sanderson A (2004) Modeling and convergence analysis of distributed coevolutionary algorithms. IEEE Trans Syst Man Cybern B Cybern 34(2):806–822

    Article  Google Scholar 

  • Vo C, Panait L, Luke S (2009) Cooperative coevolution and univariate estimation of distribution algorithms. In: Foundations of genetic algorithms X, ACM Press, New York

    Google Scholar 

  • Vose M (1999) The simple genetic algorithm. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Watson RA, Pollack JB (2001) Coevolutionary dynamics in a minimal substrate. In: Spector L et al. (eds) Proceedings of the genetic and evolutionary computation conference, GECCO 2001. Morgan Kaufmann, San Francisco, CA, pp 702–709

    Google Scholar 

  • Watson RA (2002) Compositional evolution: interdisciplinary investigations in evolvability, modularity, and symbiosis. Ph.D. thesis, Brandeis University, Waltham, Massachusetts

    Google Scholar 

  • Weibull J (1992) Evolutionary game theory. MIT Press, Cambridge, MA

    Google Scholar 

  • Wiegand RP (2004) An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, George Mason University, Fairfax, VA

    Google Scholar 

  • Wiegand RP, Potter M (2006) Robustness in cooperative coevolution. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2006. ACM Press, New York

    Google Scholar 

  • Wiegand RP, Sarma J (2004) Spatial embedding and loss of gradient in cooperative coevolutionary algorithms. In: Yao X et al. (eds) Parallel problem solving from nature, PPSN-VIII. Springer, Birmingham, UK, pp 912–921

    Chapter  Google Scholar 

  • Wiegand RP, Liles W, De Jong KA (2001) An empirical analysis of collaboration methods in cooperative coevolutionary algorithms. In: Spector L (ed) Proceedings of the genetic and evolutionary computation conference, GECCO 2001. Morgan Kaufmann, San Francisco, CA, pp 1235–1242, errata available at http://www.tesseract.org/paul/papers/gecco01-cca-errata.pdf

  • Wiegand RP, Liles WC, De Jong KA (2002) The effects of representational bias on collaboration methods in cooperative coevolution. In: Proceedings of the 7th conference on parallel problem solving from nature. Springer, Berlin, pp 257–268

    Google Scholar 

  • Williams N, Mitchell M (2005) Investigating the success of spatial coevolution. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2005. ACM Press, New York, pp 523–530

    Google Scholar 

  • Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82

    Article  Google Scholar 

  • Wolpert D, Macready W (2005) Coevolutionary free lunches. IEEE Trans Evolut Comput 9(6):721–735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Popovici , Anthony Bucci or R. Paul Wiegand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D. (2012). Coevolutionary Principles. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_31

Download citation

Publish with us

Policies and ethics