Skip to main content

SVM Tutorial — Classification, Regression and Ranking

  • Reference work entry
Handbook of Natural Computing

Abstract

Support vector machines (SVMs) have been extensively researched in the data mining and machine learning communities for the last decade, and applied in various domains. They represent a set of supervised learning techniques that create a function from training data, which usually consists of pairs of an input object, typically vectors, and a desired output. SVMs learn a function that generates the desired output given the input, and the learned function can be used to predict the output of a new object. They belong to a family of generalized linear classifier where the classification (or boundary) function is a hyperplane in the feature space. This chapter introduces the basic concepts and techniques of SVMs for learning classification, regression, and ranking functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baeza-Yates R, Ribeiro-Neto B (eds) (1999) Modern information retrieval. ACM Press, New York

    Google Scholar 

  • Bertsekas DP (1995) Nonlinear programming. Athena Scientific, Belmont, MA

    MATH  Google Scholar 

  • Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2004) Learning to rank using gradient descent. In: Proceedings of the international conference on machine learning (ICML'04), Oregon State University, Corvallis, OR, USA

    Google Scholar 

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2:121–167

    Article  Google Scholar 

  • Cao B, Shen D, Sun JT, Yang Q, Chen Z (2007) Feature selection in a kernel space. In: Proceedings of the international conference on machine learning (ICML'07), Oregon State University, Corvallis, OR, USA

    Google Scholar 

  • Cao Y, Xu J, Liu TY, Li H, Huang Y, Hon HW (2006) Adapting ranking SVM to document retrieval. In: Proceedings of the ACM SIGIR international conference on information retrieval (SIGIR'06), New York

    Google Scholar 

  • Cho B, Yu H, Lee J, Chee Y, Kim I (2008) Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels. IEEE Trans Inf Technol Biomed 12(2)

    Google Scholar 

  • Christianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Cohen WW, Schapire RE, Singer Y (1998) Learning to order things. In: Proceedings of the advances in neural information processing systems (NIPS'98), Cambridge, MA

    Google Scholar 

  • Friedman H (1998) Another approach to polychotomous classification. Tech. rep., Stanford University, Department of Statistics, Stanford, CA 10:1895–1924

    Google Scholar 

  • Fung G, Mangasarian OL (2004) A feature selection Newton method for support vector machine classification. Comput Optim Appl 28:185–202

    Article  MathSciNet  MATH  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  • Hastie T, Tibshirani R (1998) Classification by pairwise coupling. In: Advances in neural information processing systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Herbrich R, Graepel T, Obermayer K (eds) (2000) Large margin rank boundaries for ordinal regression. MIT Press, Cambridge, MA

    Google Scholar 

  • Joachims T (2002) Optimizing search engines using clickthrough data. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (KDD'02), Paris, France

    Google Scholar 

  • Joachims T (2006) Training linear SVMs in linear time. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (KDD'06) Philadelphia, PA, USA

    Google Scholar 

  • Liu T-Y (2009) Learning to rank for information retrieval. Found Trends Inf Retr 3(3):225–331

    Google Scholar 

  • Mangasarian OL (2000) Generalized support vector machines. MIT Press, Cambridge, MA

    Google Scholar 

  • Mangasarian OL (2006) Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J Mach Learn Res 7:1517–1530

    MathSciNet  MATH  Google Scholar 

  • Mangasarian OL, Wild EW (1998) Feature selection for nonlinear kernel support vector machines. Tech. rep., University of Wisconsin, Madison

    Google Scholar 

  • Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC (eds) Advances in kernel methods: support vector machines, MIT Press, Cambridge, MA

    Google Scholar 

  • Schölkopf B, Herbrich R, Smola AJ, Williamson RC (2001) A generalized representer theorem. In: Proceedings of COLT, Amsterdam, The Netherlands

    Google Scholar 

  • Smola AJ, Schölkopf B (1998) A tutorial on support vector regression. Tech. rep., NeuroCOLT2 Technical Report NC2-TR-1998-030

    Google Scholar 

  • Vapnik V (1998) Statistical learning theory. John Wiley and Sons, New York

    MATH  Google Scholar 

  • Xu J, Li H (2007) Ada Rank: a boosting algorithm for information retrieval. In: Proceedings of the ACM SIGIR international conference on information retrieval (SIGIR'07), New York

    Google Scholar 

  • Yan L, Dodier R, Mozer MC, Wolniewicz R (2003) Optimizing classifier performance via the Wilcoxon-Mann-Whitney statistics. In: Proceedings of the international conference on machine learning (ICML'03), Washington, DC

    Google Scholar 

  • Yu H (2005) SVM selective sampling for ranking with application to data retrieval. In: Proceedings of the international conference on knowledge discovery and data mining (KDD'05), Chicago, IL

    Google Scholar 

  • Yu H, Hwang SW, Chang KCC (2007) Enabling soft queries for data retrieval. Inf Syst 32:560–574

    Article  Google Scholar 

  • Yu H, Kim Y, Hwang SW (2008) RVM: An efficient method for learning ranking SVM. Tech. rep., Department of Computer Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea, http://iis.hwanjoyu.org/rvm

  • Yu H, Yang J, Wang W, Han J (2003) Discovering compact and highly discriminative features or feature combinations of drug activities using support vector machines. In: IEEE computer society bioinformatics conference (CSB'03), Stanford, CA, pp 220–228

    Google Scholar 

  • Zhu J, Rosset S, Hastie T, Tibshriani R (2003) 1-norm support vector machines. In: Proceedings of the advances in neural information processing systems (NIPS'00) Berlin, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hwanjo Yu or Sungchul Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yu, H., Kim, S. (2012). SVM Tutorial — Classification, Regression and Ranking. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_15

Download citation

Publish with us

Policies and ethics