Skip to main content

A Logical Approach to Constraint Satisfaction

  • Chapter
Complexity of Constraints

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5250))

Abstract

Since the early 1970s, researchers in artificial intelligence (AI) have investigated a class of combinatorial problems that became known as constraint-satisfaction problems (CSP). The input to such a problem consists of a set of variables, a set of possible values for the variables, and a set of constraints between the variables; the question is to determine whether there is an assignment of values to the variables that satisfies the given constraints. The study of constraint satisfaction occupies a prominent place in artificial intelligence, because many problems that arise in different areas can be modelled as constraint-satisfaction problems in a natural way; these areas include Boolean satisfiability, temporal reasoning, belief maintenance, machine vision, and scheduling (cf. [Dec92a,Kum92,Mes89, Tsa93]). In its full generality, constraint satisfaction is an NP-complete problem. For this reason, researchers in artificial intelligence have pursued both heuristics for constraint-satisfaction problems and tractable cases obtained by imposing various restrictions on the input (cf. [MF93,Dec92a,DM94,Fro97,PJ97]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. of Algebraic and Discrete Methods 8, 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ajtai, M., Gurevich, Y.: Datalog vs first-order logic. J. Comput. Syst. Sci. 49(3), 562–588 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  4. Apt, K.: Principles of Constraint Programming. Cambridge Univ. Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. Atserias, A.: On digraph coloring problems and treewidth duality. In: Proc. 20th IEEE Symp. on Logic in Computer Science, pp. 106–115. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  6. Bibel, W.: Constraint satisfaction from a deductive viewpoint. Artificial Intelligence 35, 401–413 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bulatov, A.A., Jeavons, P., Krokhin, A.A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. In: Proc. 25th ACM Symp. on Theory of Computing, pp. 226–234 (1993)

    Google Scholar 

  9. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proc. 43rd Symp. on Foundations of Computer Science, pp. 649–658. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  10. Bulatov, A.A.: Tractable conservative constraint satisfaction problems. In: Proc. 18th IEEE Symp. on Logic in Computer Science, pp. 321–330. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  11. Chen, H., Dalmau, V.: Beyond hypertree width: Decomposition methods without decompositions. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 167–181. Springer, Heidelberg (2005)

    Google Scholar 

  12. Cohen, D.A., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction and spread cut decomposition. In: Proc. 19th Int’l Joint Conf. on Artificial Intelligence, pp. 72–77 (2005)

    Google Scholar 

  13. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational databases. In: Proc. 9th ACM Symp. on Theory of Computing, pp. 77–90 (1977)

    Google Scholar 

  14. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33, 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cooper, M.C.: An optimal k-consistency algorithm. Artificial Intelligence 41(1), 89–95 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 56–70. Springer, Heidelberg (1996)

    Google Scholar 

  17. Dalmau, V.: Generalized majority-minority operations are tractable. In: Proc. 20th IEEE Symp. on Logic in Computer Science (LICS 2005), pp. 438–447 (2005)

    Google Scholar 

  18. Dechter, R.: Constraint networks. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial Intelligence, pp. 276–185. Wiley, Chichester (1992)

    Google Scholar 

  19. Dechter, R.: From local to global consistency. Artificial Intelligence 55(1), 87–107 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artificial Intelligence 113(1–2), 41–85 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    MATH  Google Scholar 

  22. Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  23. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Dechter, R., Meiri, I.: Experimental evaluation of preprocessing algorithms for constraint satisfaction problems. Artificial Intelligence 68, 211–241 (1994)

    Article  MATH  Google Scholar 

  25. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence, 353–366 (1989)

    Google Scholar 

  26. Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)

    Google Scholar 

  27. Feder, T.: Constraint satisfaction: A personal perspective. Technical report, Electronic Colloquium on Computational Complexity, Report TR06-021 (2006)

    Google Scholar 

  28. Feder, T., Ford, D.: Classification of bipartite boolean constraint satisfaction through delta-matroid intersection (2005)

    Google Scholar 

  29. Freuder, E.C.: Synthesizing constraint expressions. Communications of the ACM 21(11), 958–966 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the Association for Computing Machinery 29(1), 24–32 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: Proc. AAAI 1990, pp. 4–9 (1990)

    Google Scholar 

  32. Frost, D.H.: Algorithms and Heuristics for Constraint Satisfaction Problems. Ph.D thesis, Department of Computer Science, University of California, Irvine (1997)

    Google Scholar 

  33. Feder, T.A., Vardi, M.Y.: Monotone monadic SNP and constraint satisfaction. In: Proc. 25th ACM Symp. on Theory of Computing, pp. 612–622 (1993)

    Google Scholar 

  34. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. on Computing 28, 57–104 (1998); Preliminary version in Proc. 25th ACM Symp. on Theory of Computing, pp. 612–622 (May 1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  36. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposition constraint satisfaction problems using database techniques. Artificial Intelligence 66, 57–89 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications (Texts in Theoretical Computer Science. In: Finite Model Theory and Its Applications (Texts in Theoretical Computer Science. An EATCS Series). Springer, New York (2005)

    Google Scholar 

  38. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. In: Proc. 39th IEEE Symp. on Foundation of Computer Science, pp. 706–715 (1998)

    Google Scholar 

  39. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. In: Proc. 16th Int’l. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 394–399 (1999)

    Google Scholar 

  40. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. In: Proc. 18th ACM Symp. on Principles of Database Systems, pp. 21–32 (1999)

    Google Scholar 

  41. Gaifman, H., Mairson, H., Sagiv, Y., Vardi, M.Y.: Undecidable optimization problems for database logic programs. In: Proc. 2nd IEEE Symp. on Logic in Computer Science, pp. 106–115 (1987)

    Google Scholar 

  42. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. In: Proc. 44th IEEE Symp. on Foundations of Computer Science, pp. 552–561. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  43. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive queries tractable? In: Proc. 33rd ACM Symp. on Theory of Computing, pp. 657–666 (2001)

    Google Scholar 

  44. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial Theory, Series B 48, 92–110 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and Its applications, vol. 28. Oxford Univ. Press, Oxford (2004)

    Book  MATH  Google Scholar 

  46. Kolaitis, P.G., Panttaja, J.: On the complexity of existential pebble games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 314–329. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  47. Kumar, V.: Algorithms for constraint-satisfaction problems. AI Magazine 13, 32–44 (1992)

    Google Scholar 

  48. Kolaitis, P.G., Vardi, M.Y.: The decision problem for the probabilities of higher-order properties. In: Proc. 19th ACM Symp. on Theory of Computing, pp. 425–435 (1987)

    Google Scholar 

  49. Kolaitis, P.G., Vardi, M.Y.: On the expressive power of variable-confined logics. In: Proc. 11th IEEE Symp. on Logic in Computer Science, pp. 348–359 (1996)

    Google Scholar 

  50. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Sciences, 302–332 (2000); Earlier version in Proc. 17th ACM Symp. on Principles of Database Systems (PODS 1998)

    Google Scholar 

  51. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction. In: Proc. of the 17th National Conference on Artificial Intelligence (AAAI 2000), pp. 175–181 (2000)

    Google Scholar 

  52. Ladner, R.E.: On the structure of polynomial time reducibility. J. Assoc. Comput. Mach. 22, 155–171 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Levin, L.A.: Universal sorting problems. Problemy Peredaci Informacii 9, 115–116 (1973); English translation in Problems of Information Transmission 9, 265–266 (in Russian)

    MathSciNet  MATH  Google Scholar 

  54. Larose, B., Loten, C., Tardiff, C.: A characterization of first-order constraint satisfaction problems. In: Proc. 21st IEEE Symp. on Logic in Computer Science (2006)

    Google Scholar 

  55. Meseguer, P.: Constraint satisfaction problem: an overview. AICOM 2, 3–16 (1989)

    Google Scholar 

  56. Mackworth, A.K., Freuder, E.C.: The complexity of constraint satisfaction revisited. Artificial Intelligence 59(1-2), 57–62 (1993)

    Article  Google Scholar 

  57. McMahan, B.J., Pan, G., Porter, P., Vardi, M.Y.: Projection pushing revisited. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 441–458. Springer, Heidelberg (2004)

    Google Scholar 

  58. Seymour, P.D., Robertson, N.: Graph minors iv: Tree-width and well-quasi-ordering. J. Combinatorial Theory, Ser. B 48(2), 227–254 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  59. Pearson, J., Jeavons, P.: A survey of tractable constraint satisfaction problems. Technical Report CSD-TR-97-15, Royal Holloway University of London (1997)

    Google Scholar 

  60. Papadimitriou, C., Yannakakis, M.: Optimization, approximation and complexity classes. J. Comput. System Sci. 43, 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Rosen, E.: Finite Model Theory and Finite Variable Logics. Ph.D thesis, University of Pennsylvania (1995)

    Google Scholar 

  62. Rossman, B.: Existential positive types and preservation under homomorphisisms. In: Proc. 20th IEEE Symp. on Logic in Computer Science, pp. 467–476. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  63. Saraiya, Y.: Subtree elimination algorithms in deductive databases. Ph.D thesis, Department of Computer Science, Stanford University (1991)

    Google Scholar 

  64. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th ACM Symp. on Theory of Computing, pp. 216–226 (1978)

    Google Scholar 

  65. Tsang, E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London (1993)

    Google Scholar 

  66. Vardi, M.Y.: The complexity of relational query languages. In: Proc. 14th ACM Symp. on Theory of Computing, pp. 137–146 (1982)

    Google Scholar 

  67. Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. 14th ACM Symp. on Principles of Database Systems, pp. 266–276 (1995)

    Google Scholar 

  68. van Beek, P.: On the inherent tightness of local consistency in constraint networks. In: Proc. of National Conference on Artificial Intelligence (AAAI 1994), pp. 368–373 (1994)

    Google Scholar 

  69. van Beek, P., Dechter, R.: Constraint tightness and looseness versus local and global consistency. Journal of the ACM 44(4), 549–566 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  70. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. 7 Int’l. Conf. on Very Large Data Bases, pp. 82–94 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolaitis, P.G., Vardi, M.Y. (2008). A Logical Approach to Constraint Satisfaction. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds) Complexity of Constraints. Lecture Notes in Computer Science, vol 5250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92800-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92800-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92799-0

  • Online ISBN: 978-3-540-92800-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics