Skip to main content

Design, Modeling and Control of an Ankle Rehabilitation Robot

  • Chapter
Design and Control of Intelligent Robotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 177))

Abstract

A robotic device has been designed to carry out the range of motion and muscle strengthening exercises required for ankle rehabilitation. This chapter presents the design, modeling and control of this robotic device. Analysis on the ankle anatomy and required rehabilitation procedures resulted in the use of a parallel robot. Based on singularity and workspace analysis, suitable robot kinematic parameters were selected for the redundantly actuated parallel robot. Modeling of the manipulator and the human ankle was carried out to facilitate controller design. The manipulator was modeled through application of Lagrange’s equations while ankle kinematics and dynamics was assumed to be based on the biaxial joint ankle model. A computed torque impedance controller has been developed to regulate the relationship between the applied moments at the ankle and the ankle rotary motion. To ensure accurate estimation of state variables, a kinematic self calibration routine has also been developed for the parallel robot using redundant sensing. To allow for further development of the controller, the recursive least squares algorithm has been applied to estimate the ankle stiffness and damping parameters. This information will be used in future work for stability analysis and controller parameter adaptation. Finally, results on the simulation of the system were presented to show the performance of the developed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, C.H., Hollerbach, J.M.: Dynamic stability issues in force control of manipulators. In: IEEE International Conference on Robotics and Automation, pp. 890–896 (1987)

    Google Scholar 

  2. Belda, K., Bohm, J., Valasek, M.: State-space generalized predictive control for redundant parallel robots. Mechanics Based Design of Structures and Machines 31(3), 413–432 (2003)

    Article  Google Scholar 

  3. Besnard, S., Khalil, W.: Identifiable parameters for parallel robots kinematic calibration. In: IEEE International Conference on Robotics & Automation, Seoul, Korea, pp. 2859–2866 (2001)

    Google Scholar 

  4. Bharadwaj, K., Sugar, T., Koeneman, J., Koeneman, E.: Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. Journal of Biomechanical Engineering 127, 1009–1013 (2005)

    Article  Google Scholar 

  5. Chen, J., Siegler, S., Schneck, C.D.: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joint- Part II: Flexibility characteristics. Journal of Biomechanical Engineering 110, 374–385 (1988)

    Google Scholar 

  6. Cheng, H., Yin, Y.K., Li, Z.: Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Transactions on Mechatronics 8(4), 483–491 (2003)

    Article  Google Scholar 

  7. Colgate, J., Hogan, N.: Robust control of dynamically interacting systems. International Journal of Control 48(1), 65–88 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deutsch, J., Latonio, J., Burdea, G., Boian, R.: Post-stroke rehabilitation with the rutgers ankle system: A case study. Presence 10(4), 416–430 (2001)

    Article  Google Scholar 

  9. Dul, J., Johnson, G.: A kinematic model of the human ankle. Journal of Biomedical Engineering 7, 137–143 (1985)

    Article  Google Scholar 

  10. Erol, D., Mallapragada, V., Sarkar, N.: Adaptable force control in robotic rehabilitation. In: IEEE International Workshop on Robots and Human Interactive Communication, pp. 649–654 (2005)

    Google Scholar 

  11. Girone, M., Burdea, G., Bouzit, M., Popescu, V., Deutsch, J.: A stewart platform-based system for ankle telerehabilitation. Autonomous Robots 10, 203–212 (2001)

    Article  MATH  Google Scholar 

  12. Hesse, S., Schmidt, H., Werner, C., Bardeleben, A.: Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology 16, 705–710 (2003)

    Article  Google Scholar 

  13. Hogan, N.: Impedance control: An approach to manipulation: Part I - Theory. Journal of Dynamic Systems, Measurement, and Control 107(1), 1–7 (1985)

    MATH  MathSciNet  Google Scholar 

  14. Hogan, N.: On the stability of manipulators performing contact tasks. IEEE Journal of Robotics and Automation 4(6), 677–686 (1988)

    Article  Google Scholar 

  15. Hogan, N., Buerger, S.: Impedance and interaction control. In: Kurfess, T. (ed.) Robotics and Automation Handbook. CRC Press, New York (2005)

    Google Scholar 

  16. Kearney, R., Weiss, P., Morier, R.: System identification of human ankle dynamics: intersubject variability and intrasubject reliability. Clinical Biomechanics 5, 205–217 (1990)

    Article  Google Scholar 

  17. Krebs, H., Palazzolo, J., Dipietro, L., Ferraro, M., Krol, J., Rannekleiv, K., Volpe, B., Hogan, N.: Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Autonomous Robots 15, 7–20 (2003a)

    Article  Google Scholar 

  18. Krebs, H., Volpe, B., Aisen, M., Hening, W., Adamovich, A., Poizner, H., Subrahmanyan, K., Hogan, N.: Robotic applications in neuromotor rehabilitation. Robotica 21, 3–11 (2003b)

    Article  Google Scholar 

  19. Love, L.J., Book, W.J.: Force reflecting teleoperation with adaptive impedance control. IEEE Transactions on Systems, Man, and Cybernetics 34(1), 159–165 (2004)

    Article  Google Scholar 

  20. Mattacola, C., Dwyer, M.: Rehabilitation of the ankle after acute sprain or chronic instability. Journal of Athletic Training 37(4), 413–429 (2002)

    Google Scholar 

  21. Nester, C.J.: Rearfoot complex: a review of its interdependent components, axis orientation and functional model. The Foot 7, 86–96 (1997)

    Article  Google Scholar 

  22. Parenteau, C.S., Viano, D.C., Petit, P.Y.: Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading. Journal of Biomechanical Engineering 120, 105–111 (1998)

    Article  Google Scholar 

  23. Safran, M.R., Zachazewski, J.E., Benedetti, R.S., Bartolozzi, A.R.I., Mandelbaum, R.: Lateral ankle sprains: a comprehensive review. Part 2: treatment and rehabilitation with an emphasis on the athlete. Medicine & Science in Sports & Exercise 31(7), 438–447 (1999)

    Article  Google Scholar 

  24. Siegler, S., Chen, J., Schneck, C.D.: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints-Part I: Kinematics. Journal of Biomechanical Engineering 110, 364–373 (1988)

    Article  Google Scholar 

  25. Tarokh, M., Bailey, S.: Force tracking with unknown environment parameters using adaptive fuzzy controllers. In: IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, pp. 270–275 (1996)

    Google Scholar 

  26. Wheeler, J.W., Krebs, H.I., Hogan, N.: An ankle robot for a modular gait rehabilitation system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 1681–1684 (2004)

    Google Scholar 

  27. Yoon, J., Ryu, J.: A novel reconfigurable ankle/foot rehabilitation robot. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2290–2295 (2005)

    Google Scholar 

  28. Yoon, J., Ryu, J., Lim, K.B.: Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems 33, S15–S33 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsoi, YH., Xie, S.Q., Graham, A.E. (2009). Design, Modeling and Control of an Ankle Rehabilitation Robot. In: Liu, D., Wang, L., Tan, K.C. (eds) Design and Control of Intelligent Robotic Systems. Studies in Computational Intelligence, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89933-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89933-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89932-7

  • Online ISBN: 978-3-540-89933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics