Skip to main content

Random Subwindows for Robust Peak Recognition in Intracranial Pressure Signals

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Included in the following conference series:

Abstract

Following recent studies, the automatic analysis of intracranial pressure pulses (ICP) seems to be a promising tool for forecasting critical intracranial and cerebrovascular pathophysiological variations during the management of many neurological disorders. MOCAIP algorithm has recently been developed to automatically extract ICP morphological features. The algorithm is able to enhance the quality of ICP signals, to segment ICP pulses, and to recognize the three peaks occurring in a ICP pulse. This paper extends MOCAIP by introducing a generic framework to perform robust peak recognition. The method is local in the sense that it exploits subwindows that are randomly extracted from ICP pulses. The recognition process combines recently developed machine learning algorithms. The experimental evaluations are performed on a database built from several hundreds of hours of ICP recordings. They indicate that the proposed extension increases the robustness of the peak recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hu, X., Xu, P., Scalzo, F., Miller, C., Vespa, P., Bergsneider, M.: Morphological Clustering and Analysis of Continuous Intracranial Pressure. IEEE Transactions on Biomedical Engineering (submitted, 2008)

    Google Scholar 

  2. Takizawa, H., Gabra-Sanders, T., Miller, J.D.: Changes in the cerebrospinal fluid pulse wave spectrum associated with raised intracranial pressure. Neurosurgery 20(3), 355–361 (1987)

    Article  Google Scholar 

  3. Cardoso, E.R., Rowan, J.O., Galbraith, S.: Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J. Neurosurg. 59(5), 817–821 (1983)

    Article  Google Scholar 

  4. Scalzo, F., Xu, P., Bergsneider, M., Hu, X.: Nonlinear regression for sub-peak detection of intracranial pressure signals. In: IEEE Int. Conf. Engineering and Biology Society (EMBC) (2008)

    Google Scholar 

  5. Hu, X., Xu, P., Lee, D., Vespa, P., Bergsneider, M.: An algorithm of extracting intracranial pressure latency relative to electrocardiogram r wave. Physiological Measurement (2008)

    Google Scholar 

  6. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., Luo, S.: Ecg beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)

    Article  Google Scholar 

  7. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster analysis. Wiley series in probability and mathematical statistics. Wiley, Hoboken (2005); Leonard Kaufman, Peter J. Rousseeuw

    MATH  Google Scholar 

  8. Mare, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 34–40 (2005)

    Google Scholar 

  9. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, Boca Raton (1986)

    MATH  Google Scholar 

  10. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  11. Knerr, S., Personnaz, L., Dreyfus, G.: A stepwise procedure for building and training a neural network. Springer, Heidelberg (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scalzo, F., Xu, P., Bergsneider, M., Hu, X. (2008). Random Subwindows for Robust Peak Recognition in Intracranial Pressure Signals. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics