Skip to main content

Endocannabinoid Signaling in Neural Plasticity

  • Chapter
  • First Online:
Behavioral Neurobiology of the Endocannabinoid System

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 1))

Abstract

Plasticity refers to a physiologically measured change that may last for short or long periods of time. Endocannabinoids (ECBs) are prevalent throughout most of the brain, and modulate synaptic transmission in many ways. This chapter will focus on the roles of ECBs in neural plasticity in the mammalian brain. The topics covered can be divided loosely into two themes: how ECBs regulate synaptic plasticity, and how ECBs’ actions themselves are regulated by neuronal activity. Because ECBs regulate synaptic plasticity, the modifiability of ECB mobilization constitutes a form of “metaplasticity” (as reported by Abraham and Bear (Trends Neurosci 19:126–130, 1996)), i.e., an upstream process that determines the nature and extent of synaptic plasticity. Many of their basic functions are still being discovered, and while there is consensus on large issues, many points of divergence exist as well. This chapter concentrates on developments in the roles of ECBs in synaptic plasticity that have come to light since the major review by Chevaleyre et al. (Annu Rev Neurosci 29:37–76, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130

    PubMed  CAS  Google Scholar 

  • Abraham WC, Gustafsson B, Wigstrom H (1987) Long-term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea-pig hippocampus. J Physiol (Lond) 394:367–380

    CAS  Google Scholar 

  • Adermark L, Lovinger DM (2007a) Combined activation of L-type Ca2+ channels and synaptic transmission is sufficient to induce striatal long-term depression. J Neurosci 27:6781–6787

    PubMed  CAS  Google Scholar 

  • Ade KK, Lovinger DM (2007) Anandamide regulates postnatal development of long-term synaptic plasticity in the rat dorsolateral striatum. J Neurosci 27(9):2403–2409.

    PubMed  CAS  Google Scholar 

  • Adermark L, Lovinger DM (2007b) Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc Natl Acad Sci USA 104:20564–20569

    PubMed  CAS  Google Scholar 

  • Alger BE (2002) Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 68:247–286

    PubMed  CAS  Google Scholar 

  • Alger BE, Pitler TA (1995) Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci 18:333–340

    PubMed  CAS  Google Scholar 

  • Alger BE, Pitler TA, Wagner JJ et al. (1996) Retrograde signalling in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. J Physiol (Lond) 496:197–209

    CAS  Google Scholar 

  • Ali AB (2007) Presynaptic inhibition of GABAA receptor mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus. J Neurophysiol 98:861–869

    PubMed  CAS  Google Scholar 

  • Azad SC, Monory K, Marsicano G et al. (2004) Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J Neurosci 24:9953–9961

    PubMed  CAS  Google Scholar 

  • Azad SC, Kurz J, Marsicano G et al. (2008) Activation of CB1 specifically located on GABAergic interneurons inhibits LTD in the lateral amygdala. Learn Memory 15:143–152

    CAS  Google Scholar 

  • Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431:312–316

    PubMed  CAS  Google Scholar 

  • Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340:153–156

    PubMed  CAS  Google Scholar 

  • Beierlein M, Regehr WG (2006) Local interneurons regulate synaptic strength by retrograde release of endocannabinoids. J Neurosci 26:9935–9943

    PubMed  CAS  Google Scholar 

  • Beierlein M, Fioravante D, Regehr WG (2007) Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity. Neuron 54:949–959

    PubMed  CAS  Google Scholar 

  • Bender VA, Bender KJ, Brasier DJ et al. (2008) Two coincidence detectors for spike timingdependent plasticity in somatosensory cortex. J Neurosci 26:4166–4177

    Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356

    CAS  Google Scholar 

  • Bouaboula M, Perrachon S, Milligan L et al. (1997) A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J Biol Chem 272:22330–22339

    PubMed  CAS  Google Scholar 

  • Brenowitz SD, Regehr WG (2003) Calcium dependence of retrograde inhibition by endocannabinoids at synapses onto Purkinje cells. J Neurosci 23:6373–6384

    PubMed  CAS  Google Scholar 

  • Brenowitz SD, Best AR, Regehr WG (2006) Sustained elevation of dendritic calcium evokes widespread endocannabinoid release and suppression of synapses onto cerebellar Purkinje cells. J Neurosci 26:6841–6850

    PubMed  CAS  Google Scholar 

  • Brown SP, Brenowitz SD, Regehr WG (2003) Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 6:1048–1057

    PubMed  CAS  Google Scholar 

  • Brown SP, Safo PK, Regehr WG (2004) Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci 24:5623–5631

    PubMed  CAS  Google Scholar 

  • Brown SP, Brenowitz SD, Regehr W (2003) Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 6:1048–1057

    PubMed  CAS  Google Scholar 

  • Carlson G, Wang Y, Alger BE (2002) Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat Neurosci 5:723–724

    PubMed  CAS  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F et al. (2002) RIM1α is required for presynaptic long-term potentiation. Nature 415:327–330

    PubMed  CAS  Google Scholar 

  • Chen K, Ratzliff A, Hilgenberg L et al. (2003) Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39:599–611

    PubMed  CAS  Google Scholar 

  • Chen K, Neu A, Howard AL et al. (2007) Prevention of plasticity of endocannabinoid signalling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 27:46–58

    PubMed  Google Scholar 

  • Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses. A novel role of endocannabinoids in regulating excitability. Neuron 38:461–472

    PubMed  CAS  Google Scholar 

  • Chevaleyre V, Castillo PE (2004) Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 43:871–881

    PubMed  CAS  Google Scholar 

  • Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    PubMed  CAS  Google Scholar 

  • Chevaleyre V, Heifets BD, Kaeser PS et al. (2007) Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1α. Neuron 54:801–812

    PubMed  CAS  Google Scholar 

  • Crozier RA, Wang Y, Liu C-H et al. (2007) Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proc Natl Acad Sci USA 104:1383–1388

    PubMed  CAS  Google Scholar 

  • Dan Y, Poo M (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30

    PubMed  CAS  Google Scholar 

  • Deadwyler SA, Hampson RE, Mu J et al. (1995) Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J Pharmacol Exp Ther 273:734–743

    PubMed  CAS  Google Scholar 

  • Di S, Malcher-Lopes R, Marcheselli VL et al. (2005) Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology 145:4292–4301

    Google Scholar 

  • Diana MA, Marty A (2003) Characterization of depolarization-induced suppression of inhibition using paired interneuron – Purkinje cell recordings. J Neurosci 23:5906–5918

    PubMed  CAS  Google Scholar 

  • Dinh TP, Freund TF, Piomelli D (2002) A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 121:149–158

    PubMed  CAS  Google Scholar 

  • Edwards DA, Kim J, Alger BE (2006) Multiple mechanisms of endocannabinoid response initiation in hippocampus. J Neurophysiol 95:67–75

    PubMed  CAS  Google Scholar 

  • Edwards DA, Zhang L, Alger BE (2008) Metaplastic control of the endocannabinoid system at inhibitory synapses in hippocampus. Proc Natl Acad Sci USA 105:8142–8147

    PubMed  CAS  Google Scholar 

  • Foldy C, Neu A, Jones MV et al. (2006) Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release. J Neurosci 26:1465–1469

    PubMed  CAS  Google Scholar 

  • Foldy C, Lee SY, Szabadics J et al. (2007) Cell type-specific gating of perisomatic inhibition by cholecystokinin. Nature Neurosci 10:1128–1130

    PubMed  Google Scholar 

  • Fortin DA, Levine ES (2007) Differential effects of endocannabinoids on glutamatergic and GABAergic inputs to layer 5 pyramidal neurons. Cereb Cortex 17:163–174

    PubMed  Google Scholar 

  • Fortin DA, Trettel J, Levine ES (2004) Brief trains of action potentials enhance pyramidal neuron excitability via endocannabinoid-mediated suppression of inhibition. J Neurophysiol 92:2105–2112

    PubMed  CAS  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    PubMed  CAS  Google Scholar 

  • Gerdeman G, Lovinger DM (2001) CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468–471

    PubMed  CAS  Google Scholar 

  • Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci 5:446–451

    PubMed  CAS  Google Scholar 

  • Gibson HE, Edwards JG, Page RS et al. (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57:746–759

    PubMed  CAS  Google Scholar 

  • Giuffrida A, Parsons LH, Kerr TM et al. (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci 2:358–363

    PubMed  CAS  Google Scholar 

  • Gubellini P, Pisani A, Centonze D et al. (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74:271–300

    PubMed  CAS  Google Scholar 

  • Hampson RE, Zhuang SY, Weiner JL et al. (2003) Functional significance of cannabinoid-mediated, depolarization induced suppression of inhibition (DSI) in the hippocampus. J Neurophysiol 90:55–64

    PubMed  CAS  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H et al. (2005) Phospholipase Cβ serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45:257–268

    PubMed  CAS  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J Neurosci 27:1211–1219

    PubMed  CAS  Google Scholar 

  • Heinbockel T, Brager DH, Reich CG et al. (2005) Endocannabinoid signaling dynamics probed with optical tools. J Neurosci 25:9449–9459

    PubMed  CAS  Google Scholar 

  • Hentges ST, Low MJ, Williams JT (2005) Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids. J Neurosci 25:9746–9751

    PubMed  CAS  Google Scholar 

  • Hirasawa M, Schwab Y, Natah S et al. (2004) Dendritically released transmitters cooperate via autocrine and retrograde actions to inhibit afferent excitation in rat brain. J Physiol (Lond) 559:611–624

    CAS  Google Scholar 

  • Hoffman AF, Lupica CR (2000) Mechanisms of cannabinoid inhibition of GABAA synaptic transmission in the hippocampus. J Neurosci 20:2470–2479

    PubMed  CAS  Google Scholar 

  • Hoffman AF, Riegel AC, Lupica CR (2003) Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus. Eur J Neurosci 18:524–534

    PubMed  Google Scholar 

  • Ikeda SR (1991) Double-pulse calcium channel current facilitation in adult rat sympathetic neurones. J Physiol (Lond) 439:181–214

    CAS  Google Scholar 

  • Isokawa M, Alger BE (2006) Ryanodine receptor regulates endogenous cannabinoid mobilization in the hippocampus. J Neurophysiol 95:3001–3011

    PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Fukaya M, Maejima T et al. (2006) The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 26:2991–3001

    PubMed  CAS  Google Scholar 

  • Kim J, Isokawa M, Ledent C et al. (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci 22:10182–10191

    PubMed  CAS  Google Scholar 

  • Klapstein GJ, Colmers WF (1992) 4-Aminopyridine and low Ca2+ differentiate presynaptic inhibition mediated by neuropeptide Y, baclofen and 2-chloroadenosine in rat hippocampal CA1 in vitro. Br J Pharmacol 105:470–474

    PubMed  CAS  Google Scholar 

  • Kombian SB, Mouginot D, Pittman QJ (1997) Dendritically released peptides act as retrograde modulators of afferent excitation in the supraoptic nucleus in vitro. Neuron 19:903–912

    PubMed  CAS  Google Scholar 

  • Kreitzer AC, Malenka RC (2005) Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci 25:10537–10545

    PubMed  CAS  Google Scholar 

  • Kreitzer AC, Regehr WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727

    PubMed  CAS  Google Scholar 

  • Kreitzer AC, Carter AG, Regehr WG (2002) Inhibition of interneuron firing extends the spread of endocannabinoid signaling in the cerebellum. Neuron 34:787–796

    PubMed  CAS  Google Scholar 

  • Lenz RA, Wagner JJ, Alger BE (1998) N- and L-type calcium channel involvement in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. J Physiol (Lond) 512:61–73

    CAS  Google Scholar 

  • Liu C-H, Heynen AJ, Schuler MG et al. (2008) Cannabinoid receptor blockade reveals parallel plasticity mechanisms in different layers of mouse visual cortex. Neuron 58:340–345

    PubMed  CAS  Google Scholar 

  • Llano I, Leresche N, Marty A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565–574

    PubMed  CAS  Google Scholar 

  • Losonczy A, Biro AA, Nusser Z (2004) Persistently active cannabinoid receptors mute a sub-population of hippocampal interneurons. Proc Natl Acad Sci USA 101:1362–1367

    PubMed  CAS  Google Scholar 

  • Maccarrone M, Rossi S, Bari M et al. (2008) Anandamide inhibits metabolism and physiological actions of 2-arachidonoyglycerol in the striatum. Nature Neurosci 11:152–159

    PubMed  CAS  Google Scholar 

  • Maejima T, Hasimoto K, Yoshida T et al. (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31:463–475

    PubMed  CAS  Google Scholar 

  • Maejima T, Oka S, Hashimotodani Y et al. (2005) Synaptically driven endocannabinoid release requires Ca2 + -assisted metabotropic glutamate receptor subtype 1 to phospholipase C β4 signaling cascade in the cerebellum. J Neurosci 25:6826–6835

    PubMed  CAS  Google Scholar 

  • Makara JK, Katona I, Nyiri G et al. (2007) Involvement of nitric oxide in depolarization-induced suppression of inhibition in hippocampal pyramidal cells during activation of cholinergic receptors. J Neurosci 27:10211–10222

    PubMed  CAS  Google Scholar 

  • Marcaggi P, Attwell D (2005) Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nat Neurosci 8:776–781

    PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC et al. (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    PubMed  CAS  Google Scholar 

  • Marsicano G, Goodenough S, Monory K et al. (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88

    PubMed  CAS  Google Scholar 

  • Melis M, Perra S, Muntoni AL et al. (2004a) Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J Neurosci 24:10707–10715

    PubMed  CAS  Google Scholar 

  • Melis M, Pistis M, Perra S et al. (2004b) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 24:53–62

    PubMed  CAS  Google Scholar 

  • Monory K, Massa F, Egertova M et al. (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455–466

    PubMed  CAS  Google Scholar 

  • Mu J, Zhuang S-Y, Hampson RE et al. (2000) Protein kinase-dependent phosphorylation and cannabinoid receptor modulation of potassium A current (IA) in cultured rat hippocampal neurons. Pflugers Arch 439:541–546

    PubMed  CAS  Google Scholar 

  • Mukhtarov M, Ragozzino D, Bregestovski P (2005) Dual Ca2+ modulation of glycinergic synaptic currents in rodent hypoglossal motoneurones. J Physiol (Lond) 569:817–831

    CAS  Google Scholar 

  • Neu A, Foldy C, Soltesz I (2007) Postsynaptic origin of CB1-dependent tonic inhibition of GABA release at CCK-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. J Physiol (Lond) 578:233–247

    CAS  Google Scholar 

  • Nevian T, Sakmann B (2006) Spine Ca2+ signalling in spike-timing-dependent plasticity. J Neurosci 26:11001–11013

    PubMed  CAS  Google Scholar 

  • Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29:729–738

    PubMed  CAS  Google Scholar 

  • Ohno-Shosaku T, Tsubokawa H, Mizushima I et al. (2002) Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses. J Neurosci 22:3864–3872

    PubMed  CAS  Google Scholar 

  • Ohno-Shosaku T, Matsui M, Fukudome Y et al. (2003) Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus. Eur J Neurosci 18:109–116

    PubMed  Google Scholar 

  • Ohno-Shosaku T, Hashimotodani Y, Ano M et al. (2007) Endocannabinoid signaling triggered by NMDA receptor-mediated calcium entry into rat hippocampal neurons. J Physiol (Lond) 584:407–418

    CAS  Google Scholar 

  • Oliet SHR, Baimoukhametova DV, Piet R et al. (2007) Retrograde regulation of GABA transmission by the tonic release of oxytocin and endocannabinoids governs postsynaptic firing. J Neurosci 27:1325–1333

    PubMed  CAS  Google Scholar 

  • Pan B, Hillard CJ, Liu QS (2008) Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J Neurosci 28:1385–1397

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2005) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci 76:1307–1324

    PubMed  CAS  Google Scholar 

  • Pitler TA, Alger BE (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12:4122–4132

    PubMed  CAS  Google Scholar 

  • Reich CG, Karson MA, Karnup SV et al. (2005) Regulation of IPSP theta rhythms by muscarinic receptors and endocannabinoids in hippocampus. J Neurophysiol 94:4290–4299

    PubMed  CAS  Google Scholar 

  • Robbe D, Kopf M, Remaury A et al. (2002) Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA 99:8384–8388

    PubMed  CAS  Google Scholar 

  • Robbe D, Montgomery SM, Thome A et al. (2006) Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat Neurosci 9:1526–1533

    PubMed  CAS  Google Scholar 

  • Ronesi J, Gerdeman GL, Lovinger DM (2004) Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J Neurosci 24:1673–1679

    PubMed  CAS  Google Scholar 

  • Ryberg E, Larsson N, Sjogren S et al. (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    PubMed  CAS  Google Scholar 

  • Safo PK, Regehr WG (2005) Endocannabinoids control the induction of cerebellar LTD. Neuron 48:647–659

    PubMed  CAS  Google Scholar 

  • Shin JH, Linden DJ (2005) An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal. J Neurophysiol 94:4281–4289

    PubMed  CAS  Google Scholar 

  • Singla S, Kreitzer AC, Malenka RC (2007) Mechanisms for synapse specificity during striatal long-term depression. J Neurosci 27:5260–5264

    PubMed  CAS  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641–654

    PubMed  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2004) Endocannabinoid-dependent neocortical layer-5 LTD in the absence of postsynaptic spiking. J Neurophysiol 92:3338–3343

    PubMed  CAS  Google Scholar 

  • Starowicz K, Nigam S, Di Marzo V (2007) Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 114:13–33

    PubMed  CAS  Google Scholar 

  • Szabadits E, Cserep C, Ludanyi A et al. (2007) Hippocampal GABAergic synapses possess the molecular machinery for retrograde nitric oxide signaling. J Neurosci 27:8101–8111

    PubMed  CAS  Google Scholar 

  • Takahashi KA, Linden DJ (2000) Cannabinoid receptor modulation of synapses received by cerebellar Purkinje cells. J Neurophysiol 83:1167–1180

    PubMed  CAS  Google Scholar 

  • Trettel J, Levine ES (2002) Cannabinoids depress inhibitory synaptic inputs received by layer 2/3 pyramidal neurons of the neocortex. J Neurophysiol 88:534–539

    PubMed  CAS  Google Scholar 

  • Tzounopoulos T, Rubio ME, Keen JE et al. (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 54:291–301

    PubMed  CAS  Google Scholar 

  • van Beugen BJ, Nagaraja RY, Hansel C (2006) Climbing fiber-evoked endocannabinoid signaling heterosynaptically suppresses presynaptic cerebellar long-term potentiation. J Neurosci 26:8289–8294

    PubMed  Google Scholar 

  • Varma N, Carlson GC, Ledent C et al. (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 21(RC188):1–5

    Google Scholar 

  • Varma N, Brager DH, Morishita W et al. (2002) Presynaptic factors in the regulation of DSI expression in hippocampus. Neuropharmacology 43:550–562

    PubMed  CAS  Google Scholar 

  • Vasquez C, Lewis DL (1999) The CB1 cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J Neurosci 19:9271–9280

    PubMed  CAS  Google Scholar 

  • Wagner JJ, Alger BE (1996) Increased neuronal excitability during depolarization-induced suppression of inhibition in rat hippocampus. J Physiol (Lond) 495:107–112

    CAS  Google Scholar 

  • Wang J, Zucker RS (2001) Photolysis-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons. J Physiol (Lond) 533:757–763

    CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592

    PubMed  CAS  Google Scholar 

  • Wilson RI, Kunos G, Nicoll RA (2001) Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31:453–462

    PubMed  CAS  Google Scholar 

  • Yamasaki M, Hashimoto K, Kano M (2006) Miniature synaptic events elicited by presynaptic Ca2+ rise are selectively suppressed by cannabinoid receptor activation in cerebellar Purkinje cells. J Neurosci 26:86–95

    PubMed  CAS  Google Scholar 

  • Yasuda H, Huang Y, Tsumoto T (2008) Regulation of excitability and plasticity by endocannabinoids and PKA in developing hippocampus. Proc Natl Acad Sci USA 105:3106–3111

    PubMed  CAS  Google Scholar 

  • Yin HH, Lovinger DM (2006) Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad Sci USA 103:8251–8256

    PubMed  CAS  Google Scholar 

  • Yin HH, Davis MI, Ronesi JA et al. (2006) The role of protein synthesis in striatal long-term depression. J Neurosci 26:11811–11820

    PubMed  CAS  Google Scholar 

  • Zhu PJ, Lovinger DM (2005) Retrograde endocannabinoid signaling in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala. J Neurosci 25:6199–6207

    PubMed  CAS  Google Scholar 

  • Zhu PJ, Lovinger DM (2007) Persistent synaptic activity produces long-lasting enhancement of endocannabinoid modulation and alters long-term synaptic plasticity. J Neurophysiol 97:4386–4389

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley E. Alger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alger, B.E. (2009). Endocannabinoid Signaling in Neural Plasticity. In: Kendall, D., Alexander, S. (eds) Behavioral Neurobiology of the Endocannabinoid System. Current Topics in Behavioral Neurosciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88955-7_6

Download citation

Publish with us

Policies and ethics