Skip to main content

A Partial Granger Causality Approach to Explore Causal Networks Derived From Multi-parameter Data

  • Conference paper
Computational Methods in Systems Biology (CMSB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5307))

Included in the following conference series:

Abstract

Background: Inference and understanding of gene networks from experimental data is an important but complex problem in molecular biology. Mapping of gene pathways typically involves inferences arising from various studies performed on individual pathway components. Although pathways are often conceptualized as distinct entities, it is often understood that inter-pathway cross-talk and other properties of networks reflect underlying complexities that cannot by explained by consideration of individual pathways in isolation. In order to consider interaction between individual paths, a global multivariate approach is required. In this paper, we propose an extended form of Granger causality can be used to infer interactions between sets of time series data.

Results: We successfully tested our method on several artificial datasets, each one depicting various possibilities of connections among the participating entities. We also demonstrate the ability of our method to deal with latent and exogenous variables present in the system. We then applied this method to a highly replicated gene expression microarray time series data to infer causal influences between gene expression events involved in activation of human T-cells. The application of our method to the T-cell dataset revealed a set of strong causal links between the participating genes, with many links already experimentally verified and reported in the biological literature.

Conclusions: We have proposed a novel form of Granger causality to reverse-engineer a causal network structure from a time series dataset involving multiple entities. We have extensively and successfully tested our method on synthesized as well as real time series microarray data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ancona, N., Marinazzo, D., Stramaglia, S.: Radial basis function approach to nonlinear Granger causality of time series. Physical Review E 70, 056221 (2004)

    Article  Google Scholar 

  2. Akaike, H.: Fitting autoregressive models for regression. Annals of the Institute of Statistical Mathematics 21, 243–247 (1969)

    Article  Google Scholar 

  3. Baccala, L., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biological Cybernetics 84, 463–474 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Barabási, A.: Linked: The New Science of Networks. Perseus Books Group, 0738206679 (2002)

    Google Scholar 

  5. Berkum, N.: DNA microarrays: raising the profile. Current Opinion in Biotechnology 12(1), 48–52 (2001)

    Article  PubMed  Google Scholar 

  6. Cheng, L., Ohlen, C., Nelson, B., Greenberg, P.: Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. PNAS 99(5), 3001–3006 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cambiaggi, C., Scupoli, M., Cestari, T., Gerosa, F., Carra, G., Tridente, G., Accolla, R.: Constitutive expression of CD69 in interspecies T-cell hybrids and locus assignment to human chromosome 12. Immunogenetics 36, 117–120 (1992)

    Article  CAS  PubMed  Google Scholar 

  8. Dojer, N., Gambin, A., Mizera, A., Wilczynski, B., Tiuryn, J.: Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics 7, 249 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian Networks to Analyze Expression Data. J. Computational Biology 7, 601–620 (2000)

    Article  CAS  Google Scholar 

  10. Geier, F., Timmer, J., Fleck, C.: Reconstructing gene-regulatory networks from time series knock-out data and prior knowledge. BMC Systems Biology 1, 11 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Geweke, J.: Measurement of Linear Dependence and Feedback Between Multiple Time Series. Journal of the American Statistical Association 77, 304–313 (1982)

    Article  Google Scholar 

  12. Granger, C.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)

    Article  Google Scholar 

  13. Hidi, R., Riches, V., Al-Ali, M., Cruikshank, W.W., Center, D.M., Holgate, S.T., Djukanovic, R.: Role of B7-CD28/CTLA-4 costimulation and NF-kappa B in allergen-induced T cell chemotaxis by IL-16 and RANTES. J. Immunol. 164(1), 412–418 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, R., Wichern, D.: Applied multivariate statistical analysis. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  15. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)

    Google Scholar 

  16. Kim, S., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Bioinformatics 4(3), 228–235 (2003)

    CAS  PubMed  Google Scholar 

  17. Kitano, H.: Computational System Biology. Nature 420, 206–210 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Marinazzo, D., Pellicoro, M., Stramaglia, S.: Nonlinear parametric model for Granger causality of time series. Physical Review E 73, 066216 (2006)

    Article  Google Scholar 

  19. Mukhopadhyay, N., Chatterjee, S.: Causality and pathway search in microarray time series experiment. Bioinformatics 23, 442–449 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. Nagarajan, R., Upreti, M.: Comment on causality and pathway search in microarray time series experiment. Bioinformatics 24(7), 1029–1032 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pasque, J.M., Gross, B., Quek, L., Asazuma, N., Zhang, W., Sommers, C.L., Schweighoffer, E., Tybulewicz, V., Judd, B., Lee, J.R., Koretzky, G., Love, P.E., Samelson, L.E., Watson, S.P.: LAT is required for tyrosine phosphorylation of phospholipase cgamma2 and platelet activation by the collagen receptor GPVI. Mol. Cell Biol. 19, 8326–8334 (1999)

    Article  Google Scholar 

  22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  23. Pe’er, D., Regev, A., Elidan, E., Friedman, N.: Inferring Subnetworks from Preturbed Expression Profiles. Bioinformatics 17, S215–S224 (2001)

    Article  Google Scholar 

  24. Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba, A., Wild, D., Falciani, F.: Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9), 1361–1372 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467–470 (1995)

    Article  CAS  PubMed  Google Scholar 

  26. Takeno, S., Hirakawa, K., Ueda, T., Furukido, K., Osada, R., Yajin, K.: Nuclear factor-kappa B activation in the nasal polypepithelium: relationship to local cytokine gene expression. Laryngoscope 112(1), 53–58 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Van Someren, E.P., Wessels, L.F., Backer, E., Reinders, M.J.: Genetic network modeling. Pharmacogenomics 4, 507–525 (2002)

    Article  Google Scholar 

  28. Werhli, A., Grzegorczyk, M., Husmeier, D.: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 22(20), 2523–2531 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Wiener, N.: The theory of prediction. In: Beckenbach, E.F. (ed.) Modern Mathermatics for Engineers, ch. 8. McGraw-Hill, New York (1956)

    Google Scholar 

  30. Yang, Y., Dudoit, S., Luu, P., Lin, D., Peng, V., Ngai, J., Speed, T.: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research 30(4), 15 (2002)

    Article  CAS  Google Scholar 

  31. Yeung, M., Tegnérdagger, J., Collins, J.: Reverse engineering gene networks using singular value decomposition and robust regression. PNAS 99(9), 6163–6168 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, W., Irvin, B., Trible, R., Abraham, R., Samelson, L.: Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. International Immunology 11(6), 943–950 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krishna, R., Guo, S. (2008). A Partial Granger Causality Approach to Explore Causal Networks Derived From Multi-parameter Data. In: Heiner, M., Uhrmacher, A.M. (eds) Computational Methods in Systems Biology. CMSB 2008. Lecture Notes in Computer Science(), vol 5307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88562-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88562-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88561-0

  • Online ISBN: 978-3-540-88562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics