Skip to main content

Silicon in Life: Whither Biological Silicification?

  • Chapter
  • First Online:
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 47))

Abstract

In my opinion, the last decade or so has seen a golden era of research into the many facets of biological silicification. The contents of this volume are testimony to recent advances in the field (Müller and Grachev 2008). The successes should be carried through into the next 10 years during which time the processes involved in the biomineralisation of silica ought to become as well understood as they are for calcium and iron-based biominerals. Of course, the reason why progress in biological silicification has been relatively slow is an apparent lack of appropriate chemistry to explain myriad forms of seemingly diverse examples of the deposition of silica in biota. In this Chapter, the title of which is a paraphrase of Voronkov et al.'s great work, Silicon and Life (1975), I have tried to provide plau sible bioinorganic solutions to biological silicification. Ideas are presented in the context of the evolution of biological silicification and are discussed, in the main, naively without specific reference to published research which might either refute or support their validity. (This serves as an apology to the many excellent scientists whose work has not been but should have been cited!) I hope the ideas presented herein demonstrate that, rather than acting as a barrier to understanding biologi cal silicification, the limited, biologically significant, chemistry of silicic acid is actually sufficient to act as a platform for future research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–85.

    Article  CAS  Google Scholar 

  • Aston SR (Ed.) (1983) Silicon geochemistry and biogeochemistry. Academic, New York, 248p.

    Google Scholar 

  • Birchall JD (1990) The role of silicon in biology. Chem. Britain Feb. 141–144.

    Google Scholar 

  • Evered D, O'Connor M (Eds) (1986) Silicon biochemistry. Ciba Found. Symp. 121, 264p.

    Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91, 11–17.

    Article  CAS  Google Scholar 

  • Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J. Inorg. Biochem. 69, 139–144.

    Article  CAS  Google Scholar 

  • Exley C (2003) A biogeochemical cycle for aluminium? J. Inorg. Biochem. 97, 1–7.

    Article  CAS  Google Scholar 

  • Exley C, Tollervey A, Gray G, Roberts S, Birchall JD (1993) Silicon, aluminium and the biologi cal availability of phosphorus in algae. Proc. Roy. Soc. Lond. B 253, 93–99.

    Article  CAS  Google Scholar 

  • Exley C, Mamutse G, Korchazhkina O, Pye E, Strekopytov S, Polwart A, Hawkins C (2006a) Elevated urinary excretion of aluminium and iron in multiple sclerosis. Mult. Scler. 12, 533–540.

    Article  CAS  Google Scholar 

  • Exley C, Korchazhkina O, Job D, Strekopytov S, Polwart A, Crome P (2006b) Non-invasive ther apy to reduce the body burden of aluminium in Alzheimer's disease. J. Alzh. Dis. 10, 17–24.

    Article  CAS  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies JG, Bélanger RR (2006) The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc. Natl. Acad. Sci. USA 103, 17554–17559.

    Article  CAS  Google Scholar 

  • Fraústo da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Oxford University Press, Oxford, 561p.

    Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley-Interscience, New York, 866p.

    Google Scholar 

  • Mahieu S, Millen N, del Carmen Contini M, Gonzalez M, Molinas SM, Elías MM (2006) Urinary concentrating mechanism and aquaporin-2 abundance in rats chronically treated with alu minium lactate. Toxicology 223, 209–218.

    Article  CAS  Google Scholar 

  • Milla MAR, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminium stress in rye. Plant Physiol. 130, 1706–1716.

    Article  CAS  Google Scholar 

  • Mock T, Samanta MP, Iverson V, Berthiaume C, Robison M, Holtermann K et al. (2008) Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc. Natl. Aacd. Sci. USA 105, 1579–1584.

    Article  CAS  Google Scholar 

  • Müller WEG, Grachev MA (Eds) (2008) Potential of biosilica in evolution, morphogenesis and nanobiotechnology: Case study Lake Baikal (in press).

    Google Scholar 

  • Müller WEG, Schlo²macher U, Wang X, Boreiko A, Brandt D et al. (2008) Poly(silicate)-metabolising silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase). FEBS J. 275, 362–370.

    Article  Google Scholar 

  • Perry CC (2008) An overview of silica in biology, its chemistry and recent technological advances. In Müller WEG, Grachev MA (Eds) Potential of biosilica in evolution, morphogenesis and nanobiotechnology: Case study Lake Baikal (in press).

    Google Scholar 

  • Pokrovski GS, Martin F, Hazemann J-L, Schott J (2000) An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution. Chem. Geol. 163, 151–165.

    Article  CAS  Google Scholar 

  • Raven JA (2001) Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndörfer GH (Eds) Silicon in agriculture, Elsevier Science, Amsterdam, The Netherlands, pp. 41–56.

    Chapter  Google Scholar 

  • Safonova TA, Annenkov VV, Chebykin EP, Danilovtseva EN, Likhoshway YV, Grachev MA (2007) Aberration of morphogenesis of siliceous frustule elements of the diatom Synedra acus in the presence of germanic acid. Biochemistry (Moscow) 72, 1261–1269.

    CAS  PubMed  Google Scholar 

  • Tacke R (1999) Milestones in the biochemistry of silicon: from basic research to biotechnological applications. Angew. Chem. Int. Ed. 38, 3015–3018.

    Article  CAS  Google Scholar 

  • Voronkov MG, Zelchan GI, Lukevitz EY (1975) Silizium und Leben, transl. by K. Rühlmann, Akademie-Verlag, Berlin, 370p.

    Google Scholar 

  • Werner D (Ed.) (1977) The biology of diatoms. Botanical Monographs Volume 13, Blackwell Scientific, Oxford, 498p.

    Google Scholar 

  • Williams RJP, Fraústo da Silva JJR (1996) The natural selection of the chemical elements. Oxford University Press, Oxford, 646p.

    Google Scholar 

  • Wischmeyer AG, Del Amo Y, Brzezinski M, Wolf-Gladrow DA (2003) Theoretical constraints on the uptake of silicic acid by marine diatoms. Mar. Chem. 82, 13–29.

    Article  CAS  Google Scholar 

  • Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell. Mol. Life Sci. 64, 2413–2421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Exley, C. (2009). Silicon in Life: Whither Biological Silicification?. In: Müller, W.E.G., Grachev, M.A. (eds) Biosilica in Evolution, Morphogenesis, and Nanobiotechnology. Progress in Molecular and Subcellular Biology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88552-8_7

Download citation

Publish with us

Policies and ethics