Skip to main content

Introduction to Decoherence Theory

  • Chapter
Entanglement and Decoherence

Part of the book series: Lecture Notes in Physics ((LNP,volume 768))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. (Springer, Berlin 2003)

    Google Scholar 

  2. H.-P. Breuer and F. Petruccione: The Theory of Open Quantum Systems (Oxford University Press, Oxford 2002)

    MATH  Google Scholar 

  3. Strunz, W.T.: Decoherence in quantum physics. In: Buchleitner, A., Hornberger, K. (eds.) Coherent Evolution in Noisy Environments, Lect. Notes Phys. 611, Springer, Berlin (2002)

    Google Scholar 

  4. G. Bacciagaluppi: The role of decoherence in quantum mechanics. In: Stansford The Stanford Encyclopedia of Philosophy, (Stanford University, Stanford 2005) http://plato.stanford.edu.

  5. M. Schlosshauer: Decoherence, the measurement problem, and interpretations of quantum mechanics, Rev. Mod. Phys. 76, 1267–1305 (2004)

    Article  ADS  Google Scholar 

  6. W. H. Zurek: Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. P. Paz and W. H. Zurek: Environment-induced decoherence and the transition from quantum to classical. In: Les Houches Summer School Series, vol. 72, ed. by R. Kaiser, C. Westbrook, and F. David (Springer-Verlag, Berlin 2001) p. 533

    Google Scholar 

  8. A. Bassi and G. Ghirardi: Dynamical reduction models, Phys. Rep. 379, 257 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. K. Kraus: States, Effects and Operations: Fundamental notions of Quantum Theory (Springer, Berlin 1983)

    Book  MATH  Google Scholar 

  10. P. Busch, P. J. Lahti, and P. Mittelstaed: The Quantum Theory of Measurement (Springer-Verlag, Berlin 1991)

    Google Scholar 

  11. A. S. Holevo: Statistical Structure of Quantum Theory (Springer, Berlin 2001)

    MATH  Google Scholar 

  12. C. W. Helstrom: Quantum Detection and Estimation Theory (Academic Press, New York 1976)

    Google Scholar 

  13. A. Chefles: Quantum state discrimination, Contemp. Phys. 41, 401–424 (2000)

    Article  ADS  Google Scholar 

  14. G. M. Palma, K.-A. Suominen, and A. K. Ekert: Quantum computers and dissipation, Proc. R. Soc. Lond. A 452, 567 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. D. F. Walls and G. J. Milburn: Quantum Optics (Springer, Berlin 1994)

    MATH  Google Scholar 

  16. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner: Distribution functions in physics: Fundamentals, Phys. Rep. 106, 121–167 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  17. U. Weiss: Quantum Dissipative Systems, 2nd edn. (World Scientific, Singapore 1999)

    Book  MATH  Google Scholar 

  18. P. Machnikowski: Change of decoherence scenario and appearance of localization due to reservoir anharmonicity, Phys. Rev. Lett. 96, 140405 (2006)

    Article  ADS  Google Scholar 

  19. Y. Imry: Elementary explanation of the inexistence of decoherence at zero temperature for systems with purely elastic scattering, Arxiv preprint cond-mat/0202044 (2002)

    Google Scholar 

  20. R. Doll, M. Wubs, P. Hänggi, and S. Kohler: Limitation of entanglement due to spatial qubit separation, Europhys. Lett. 76, 547–553 (2006)

    Article  ADS  Google Scholar 

  21. E. B. Davies: Quantum Theory of Open Systems (Academic Press, London 1976)

    Google Scholar 

  22. H. Spohn: Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys. 52, 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Alicki and K. Lendi: Quantum Dynamical Semigroups and Applications (Springer, Berlin 1987)

    Book  MATH  Google Scholar 

  24. F. Petruccione and B. Vacchini: Quantum description of Einstein’s Brownian motion, Phys. Rev. E 71, 046134 (2005)

    Article  ADS  Google Scholar 

  25. H. Carmichael: An Open Systems Approach to Quantum Optics (Springer, Berlin 1993)

    MATH  Google Scholar 

  26. K. Mølmer, Y. Castin, and J. Dalibard: Monte Carlo wave-function method in quantum optics, J. Opt. Soc. Am. B 10, 524–538 (1993)

    Article  ADS  Google Scholar 

  27. M. B. Plenio and P. L. Knight: The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Mod. Phys. 70, 101–144 (1998)

    Article  ADS  Google Scholar 

  28. J. M. Raimond, M. Brune, and S. Haroche, Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565–582 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Haroche: Mesoscopic superpositions and decoherence in quantum optics. In: Quantum entanglement and information processing, Les Houches 2003, ed. by D. Esève, J.-M. Raimond, and J. Dalibard (Elsevier, Amsterdam 2004)

    Google Scholar 

  30. A. O. Caldeira and A. J. Leggett: Path integral approach to quantum Brownian motion, Physica A 121, 587–616 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. W. G. Unruh and W. H. Zurek: Reduction of a wave packet in quantum brownian motion, Phys. Rev. D 40, 1071–1094 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Diósi: On high temperature Markovian equation for quantum Brownian motion, Europhys. Lett. 22, 1-3 (1993)

    Article  ADS  Google Scholar 

  33. L. Lukacs: Characteristic Functions (Griffin, London 1966)

    Google Scholar 

  34. K. Hornberger: Monitoring approach to open quantum dynamics using scattering theory, Europhys. Lett. 77, 50007 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  35. J. R. Taylor: Scattering Theory (John Wiley & Sons, New York 1972)

    Google Scholar 

  36. K. Hornberger and J. E. Sipe: Collisional decoherence reexamined, Phys. Rev. A 68, 012105 (2003)

    Article  ADS  Google Scholar 

  37. K. Hornberger: Master equation for a quantum particle in a gas, Phys. Rev. Lett. 97, 060601 (2006)

    Article  ADS  Google Scholar 

  38. K. Hornberger and B. Vacchini: Monitoring derivation of the quantum linear Boltzmann equation, Phys. Rev. A 77, 022112 (2009)

    Article  ADS  Google Scholar 

  39. E. Joos and H. D. Zeh: The emergence of classical properties through interaction with the environment, Z. Phys. B: Condens. Matter 59, 223–243 (1985)

    Article  ADS  Google Scholar 

  40. K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermüller, M. Arndt, and A. Zeilinger: Collisional decoherence observed in matter wave interferometry, Phys. Rev. Lett. 90, 160401 (2003)

    Article  ADS  Google Scholar 

  41. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, and M. Arndt: Decoherence of matter waves by thermal emission of radiation, Nature 427, 711–714 (2004)

    Article  ADS  Google Scholar 

  42. R. Dümcke: The low density limit for an N-level system interacting with a free bose or fermi gas, Commun. Math. Phys. 97, 331–359 (1985)

    Article  MATH  ADS  Google Scholar 

  43. W. H. Zurek: Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D 24, 1516–1525 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  44. L. Diósi and C. Kiefer: Robustness and diffusion of pointer states, Phys. Rev. Lett. 85, 3552–3555 (2000)

    Article  ADS  Google Scholar 

  45. W. H. Zurek, S. Habib, and J. P. Paz: Coherent states via decoherence, Phys. Rev. Lett. 70, 1187–1190 (1993)

    Article  ADS  Google Scholar 

  46. N. Gisin and M. Rigo: Relevant and irrelevant nonlinear Schrödinger equations, J. Phys. A: Math. Gen. 28, 7375–7390 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hornberger, K. (2009). Introduction to Decoherence Theory. In: Buchleitner, A., Viviescas, C., Tiersch, M. (eds) Entanglement and Decoherence. Lecture Notes in Physics, vol 768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88169-8_5

Download citation

Publish with us

Policies and ethics