Skip to main content

On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios

  • Conference paper
Comparative Genomics (RECOMB-CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Included in the following conference series:

Abstract

In the past years, many combinatorial arguments have been made to support the theory that mammalian genome rearrangement scenarios rely heavily on breakpoint reuse. Different models of genome rearrangements have been suggested, from the classical set of operations that include inversions, translocations, fusions and fissions, to more elaborate models that include transpositions. Here we show that the current definition of breakpoint reuse rate is based on assumptions that are seldom true for mammalian genomes, and propose a new approach to compute this parameter. We explore the formal properties of this new measure and apply these results to the human-mouse genome comparison. We show that the reuse rate is intimately linked to a particular rearrangement scenario, and that the reuse rate can vary from 0.89 to 1.51 for scenarios of the same length that transform the mouse genome into the human genome, where a rate of 1 indicates no reuse at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseyev, M., Pevzner, P.A.: Are there rearrangement hotspots in the human genome? PLoS Comput. Biol. 3(11), e209 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM J. Computing 25(2), 272–289 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bergeron, A., Mixtacki, J., Stoye, J.: HP distance via Double Cut and Join distance. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 56–68. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592 (1995)

    Google Scholar 

  6. Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal capping. Inf. Process. Lett. 104(1), 14–20 (2007)

    Article  MathSciNet  Google Scholar 

  7. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for sorting by reversals with application to genome rearrangement. Algorithmica 13(1/2), 180–210 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangements. J. Bioinf. Comput. Biol. 1(1), 71–94 (2003)

    Article  Google Scholar 

  9. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. USA 100(13), 7672–7677 (2003)

    Article  Google Scholar 

  10. Pevzner, P., Tesler, G.: Transforming men into mice: The Nadeau-Taylor chromosomal breakage model revisited. In: Proceedings of RECOMB 2003, pp. 247–256 (2003)

    Google Scholar 

  11. Sankoff, D.: Edit distances for genome comparison based on non-local operations. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 121–135. Springer, Heidelberg (1992)

    Google Scholar 

  12. Sankoff, D., Trinh, P.: Chromosomal breakpoint reuse in genome sequence rearrangement. J. Comput. Biol. 12(6), 812–821 (2005)

    Article  Google Scholar 

  13. Sturtevant, A.H.: A crossover reducer in Drosophila melanogaster due to inversion of a section of the third chromosome. Biologisches Zentralblatt 46(12), 697–702 (1926)

    Google Scholar 

  14. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65(3), 587–609 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tesler, G.: GRIMM: Genome rearrangements web server. Bioinformatics 18(3), 492–493 (2002)

    Article  MathSciNet  Google Scholar 

  16. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergeron, A., Mixtacki, J., Stoye, J. (2008). On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics