Skip to main content

Approaching the Low-Frequency Spectrum of Rotating Stars

  • Chapter
The Rotation of Sun and Stars

Part of the book series: Lecture Notes in Physics ((LNP,volume 765))

Abstract

In this lecture I present the basic knowledge needed to understand the properties of the low-frequency spectrum of rotating stars. This spectrum is a mixture of inertial and gravity modes. These modes both have singularities in the limit of vanishing diffusion for a generic container. I explain the nature and the role of these singularities; I also discuss the way these modes can be computed and the actual difficulties that need to be circumvented to get sensible results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aufdenberg, J.P., Mérand, A., Coudé du Foresto, V., Absil, O., Di Folco, E., Kervella, P., Ridgway, S.T., Berger, D.H., Brummelaar,T.A.t., McAlister, H.A., Sturmann, J., Sturmann, L., Turner, N.H. First Results from the CHARA array. VII. Long-baseline interferometric measurements of Vega consistent with a pole-on, rapidly rotating star. ApJ 645, 664–675 (2006)

    Google Scholar 

  2. Cartan, E.: Sur les petites oscillations d’une masse fluide. Bull. Sci. Math. 46, 317–352, 356–369 (1922)

    Google Scholar 

  3. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  4. Dintrans, B., Rieutord, M.: Oscillations of a rotating star: a non-perturbative theory. A&A 354, 86–98 (2000)

    ADS  Google Scholar 

  5. Dintrans, B., Rieutord, M., Valdettaro, L.: Gravito-inertial waves in a rotating stratified sphere or spherical shell. J. Fluid Mech. 398, 271–297 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Domiciano de Souza, A., Kervella, P., Jankov, S., Abe, L., Vakili, F., di Folco, E., Paresce, F. The spinning-top Be star Achernar from VLTI-VINCI. A&A 407, L47–L50 (2003)

    Google Scholar 

  7. Domiciano de Souza, A., Kervella, P., Jankov, S., Vakili, F., Ohishi, N., Nordgren, T.E., Abe, L.: Gravitational-darkening of Altair from interferometry. A&A 442, 567–578 (2005)

    Article  ADS  Google Scholar 

  8. Friedlander, S., Siegmann, W.: Internal waves in a rotating stratified fluid in an arbitrary gravitational field. Geophys. Astrophys. Fluid Dyn. 19, 267–291 (1982)

    Article  MATH  ADS  Google Scholar 

  9. Maas, L., Benielli, D., Sommeria, J., Lam, F.P.: Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388, 557–561 (1997)

    Article  ADS  Google Scholar 

  10. Monnier, J.D., Zhao, M., Pedretti, E., Thureau, N., Ireland, M., Muirhead, P., Berger, J.P., Millan-Gabet, R., Van Belle, G., ten Brummelaar, T., McAlister, H., Ridgway, S., Turner, N., Sturmann, L., Sturmann, J., Berger, D.: Imaging the Surface of Altair. Science 317, 342–, arXiv:0706.0867 (2007)

    Google Scholar 

  11. Peterson, D., Hummel, C., Pauls, T., Armstrong, J., Benson, J., Gilbreath, G., Hindsley, R., Hutter, D., Johnston, K., Mozurkewich, D., Schmitt, H.: Resolving the effects of rotation in Altair with long-baseline interferometry. ApJ 636, 1087–1097 (2006)

    Article  ADS  Google Scholar 

  12. Rieutord, M.: The dynamics of the radiative envelope of rapidly rotating stars. i. a spherical boussinesq model. A&A 451, 1025–1036 (2006)

    Article  MATH  ADS  Google Scholar 

  13. Rieutord, M., Georgeot, B., Valdettaro, L.: Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103–144 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Rieutord, M., Valdettaro, L., Georgeot, B.: Analysis of singular inertial modes in a spherical shell: the slender toroidal shell model. J. Fluid Mech. 463, 345–360 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Roberts, P., Stewartson, K.: On the stability of a maclaurin spheroid of small viscosity. ApJ 137, 777–790 (1963)

    Article  ADS  Google Scholar 

  16. Sleijpen, G., Van der Vorst, H.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42, 267–293 (2000)

    Article  MathSciNet  Google Scholar 

  17. Valdettaro, L., Rieutord, M., Braconnier, T., Fraysse, V.: Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and arnoldi-chebyshev algorithm. J. Comput. Appl. Math. 205, 382–393, physics/0604219 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. van Belle, G.T., Ciardi, D.R., Thompson, R.R., Akeson, R.L., Lada, E.A.: Altair’s Oblateness and Rotation Velocity from Long-Baseline Interferometry. ApJ 559, 1155–1164 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rieutord, M. (2009). Approaching the Low-Frequency Spectrum of Rotating Stars. In: Rozelot, JP., Neiner, C. (eds) The Rotation of Sun and Stars. Lecture Notes in Physics, vol 765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87831-5_4

Download citation

Publish with us

Policies and ethics