Skip to main content

Visual Cortex Mechanisms of Strabismus: Development and Maldevelopment

  • Chapter
Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham PA (1974) Epidemiology of strabismus. Br J Ophthalmol 58:224–231

    PubMed  CAS  Google Scholar 

  2. Kiorpes L, Boothe RG, Carlson MR, et al (1985) Frequency of naturally occurring strabismus in monkeys. J Pedriatr Ophthalmol Strabismus 22:60–64

    CAS  Google Scholar 

  3. Tamura EE, Hoyt CS (1987) Oculomotor consequences of intraventricular hemorrhages in premature infants. Arch Ophthalmol 105:533–535

    PubMed  CAS  Google Scholar 

  4. Khanna S, Sharma A, Ghasia F, et al (2009) Prevalence of the ocular motor signs of the infantile strabismus complex in children with and without cerebral visual pathway white matter injury. Invest Ophthalmol Vis Sci Abstracts 09-A-5876

    Google Scholar 

  5. Pike MG, Holmstrom G, de Vries LS, et al (1994) Patterns of visual impairment associated with lesions of the preterm infant brain. Dev Med Child Neurol 36:849–862

    PubMed  CAS  Google Scholar 

  6. Hoyt CS (2003) Visual function in the brain-damaged child. Eye 17:369–384

    PubMed  CAS  Google Scholar 

  7. van Hof-van Duin J, Evenhuis-van Leunen A, Mohn G, et al (1989) Eff ects of very low birth weight (VLBW) on visual development during the first year after term. Early Hum Dev 20:255–266

    PubMed  Google Scholar 

  8. VanderVeen DK, Coats DK, Dobson V, et al (2006) Prevalence and course of strabismus in the first year of life for infants with prethreshold retinopathy of prematurity. Arch Ophthalmol 124:766–773

    Google Scholar 

  9. Hiles DA, Hoyme SH, McFarlane F (1974) Down's syndrome and strabismus. Am Orthopt J 24:63–68

    PubMed  CAS  Google Scholar 

  10. Shapiro MB, France TD (1985) The ocular features of Down's syndrome. Am J Ophthalmol 99:659–663

    PubMed  CAS  Google Scholar 

  11. Pediatric eye disease investigator group (2002) The clinical spectrum of early-onset esotropia: experience of the congenital esotropia observational study. Am J Ophthalmol 133:102–108

    Google Scholar 

  12. Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois, Urbana

    Google Scholar 

  13. Tychsen L (1999) Infantile esotropia: current neurophysio-logic concepts. In: Rosenbaum AL, Santiago AP (eds) Clinical strabismus management. WB Saunders, Philadephia

    Google Scholar 

  14. Volpe JJ (1987) Hypoxic-ischemic encephalopathy: neuro-pathology and pathogenesis. In: Volpe JJ, Markowitz M (eds) Neurology of the newborn. W.B.Saunders Company, Philadelphia

    Google Scholar 

  15. Noetzel MJ, Brunstrom JE (2001) The vulnerable oligoden-drocyte. Inflammatory observations on a cause of cerebral palsy. Neurology 56:1254–1255

    PubMed  CAS  Google Scholar 

  16. Huttenlocher P, de Courten C, Garey L, et al (1982) Synaptogenesis in human visual cortex: evidence for synapse elimination during normal development. Neurosci Lett 33:247–252

    PubMed  CAS  Google Scholar 

  17. Phelps M, Mazziotta J, Kuhl D, et al (1981) Tomographic mapping of human cerebral metabolism: visual stimulation and deprivation. Neurology 31:517–529

    PubMed  CAS  Google Scholar 

  18. Lorenz B (2002) Genetics of isolated and syndromic strabismus: facts and perspectives. Strabismus 10:147–156

    PubMed  Google Scholar 

  19. Paul TO, Hardage LK (1994) The heritability of strabismus. Ophthalmic Genet 15:1–18

    PubMed  CAS  Google Scholar 

  20. Maumenee IH, Alston A, Mets MB, et al (1986) Inheritance of congenital esotropia. Tr Am Ophthalmol Soc 84:85–93

    CAS  Google Scholar 

  21. Archer SM, Sondhi N, Helveston EM (1989) Strabismus in infancy. Ophthalmology 96:133–137

    PubMed  CAS  Google Scholar 

  22. Birch E, Stager D, Wright K, et al (1998) The natural history of infantile esotropia during the first six months of life. J AAPOS 2:325–328

    PubMed  CAS  Google Scholar 

  23. Fox R, Aslin RN, Shea SL, et al (1980) Stereopsis in human infants. Science 207:323–324

    PubMed  CAS  Google Scholar 

  24. Birch EE, Gwiazda J, Held R (1982) Stereoacuity development for crossed and uncrossed disparities in human infants. Vision Res 22:507–513

    PubMed  CAS  Google Scholar 

  25. Birch EE, Shimojo S, Held R (1985) Preferential-looking assessment of fusion and stereopsis in infants aged 1 to 6 months. Invest Ophthalmol Vis Sci 26:366–370

    PubMed  CAS  Google Scholar 

  26. O'Dell C, Boothe RG (1997) The development of stereoacuity in infant rhesus monkeys. Vision Res 37:2675–2684

    PubMed  Google Scholar 

  27. Birch EE, Gwiazda J, Held R (1983) The development of vergence does not account for the onset of stereopsis. Perception 12:331–336

    PubMed  CAS  Google Scholar 

  28. Gwiazda J, Bauer JAJ, Held R (1989) Binocular function in human infants: correlation of stereoptic and fusion-rivalry discriminations. J Pediatr Ophthalmol Strabismus 26:128–132

    PubMed  CAS  Google Scholar 

  29. Aslin RN (1977) Development of binocular fixation in human infants. J Exp Child Psychol 23:133–150.

    PubMed  CAS  Google Scholar 

  30. Aslin RN, Jackson RW (1979) Accommodative-convergence in young infants: development of a synergistic sensory-motor system. Can J Psychol 33:222–231

    PubMed  CAS  Google Scholar 

  31. Hainline L, Riddell PM (1995) Binocular alignment and vergence in early infancy. Vision Res. 35:3229–3236

    PubMed  CAS  Google Scholar 

  32. Horwood AM (1993) Maternal observations of ocular alignment in infants. J Pediatr Ophthalmol Strabismus 30:100–105

    PubMed  CAS  Google Scholar 

  33. Horwood AM, Riddell PM (2004) Can misalignments in typical infants be used as a model for infantile esotropia? Invest Ophthalmol Vis Sci 45:714–720

    PubMed  Google Scholar 

  34. Riddell PM, Horwood AM, Houston SM, et al (1999) The response to prism deviations in human infants. Curr Biol 9:1050–1052

    PubMed  CAS  Google Scholar 

  35. Norcia AM, Garcia H, Humphry R, et al (1991) Anomalous motion VEPs in infants and in infantile esotropia. Invest Ophthalmol Vis Sci 32:436–439

    PubMed  CAS  Google Scholar 

  36. Norcia AM (1996) Abnormal motion processing and bin-ocularity: infantile esotropia as a model system for eff ects of early interruptions of binocularity. Eye 10:259–265

    PubMed  Google Scholar 

  37. Brown RJ, Norcia AM (1997) A method for investigating binocular rivalry in real-time with the steady-state VEP. Vision Res 37:2401–2408

    PubMed  CAS  Google Scholar 

  38. Birch EE, Fawcett S, Stager D (2000) Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes. Invest Ophthalmol Vis Sci 41:1719–1723

    PubMed  CAS  Google Scholar 

  39. Bosworth RG, Birch EE (2007) Direction-of-motion detection and motion VEP asymmetries in normal children and children with infantile esotropia. Invest Ophthalmol Vis Sci 48:5523–5531

    PubMed  Google Scholar 

  40. Atkinson J (1979) Development of optokinetic nystagmus in the human infant and monkey infant: an analogue to development in kittens. In: Freeman RD (ed) Developmental neurobiology of vision. Plenum, New York

    Google Scholar 

  41. Naegele JR, Held R (1982) The postnatal development of monocular optokinetic nystagmus in infants. Vision Res 22:341–346

    PubMed  CAS  Google Scholar 

  42. Schor CM, Narayan V, Westall C (1983) Postnatal development of optokinetic after nystagmus in human infants. Vision Res. 23:1643–1647

    PubMed  CAS  Google Scholar 

  43. Wattam-Bell J, Braddick O, Atkinson J, et al (1987) Measures of infant binocularity in a group at risk for strabismus. Clin Vis Sci 4:327–336

    Google Scholar 

  44. Jacobs M, Harris C, Taylor D (1994) The Development of eye movements in infancy. In: Lennerstrand G (ed) Update on strabismus and pediatric ophthalmology. Proceedings of the Joint ISA and AAPO&S Meeting. Vancouver, Canada. June 19 to 23, 1994. CRC, Boca Raton

    Google Scholar 

  45. Tychsen L (2001) Critical periods for development of visual acuity, depth perception and eye tracking. In: Bailey DB Jr, et al (ed) Critical thinking about critical periods. Paul H. Brookes, Baltimore

    Google Scholar 

  46. Tychsen L, Hurtig RR, Scott WE (1985) Pursuit is impaired but the vestibulo-ocular reflex is normal in infantile strabismus. Arch Ophthalmol 103:536–539

    PubMed  CAS  Google Scholar 

  47. Wong AMF, Foeller P, Bradley D, et al (2003) Early versus delayed repair of infantile stabismus in macaque monkeys: I. Ocular motor eff ects. J AAPOS 7:200–209

    PubMed  Google Scholar 

  48. Birch E, Petrig B (1996) FPL and VEP measures of fusion, stereopsis and stereoacuity in normal infants. Vision Res. 36:1321–1327

    PubMed  CAS  Google Scholar 

  49. Skarf B, Eizenman M, Katz LM, et al (1993) A new VEP system for studying binocular single vision in human infants. J Pediatr Ophthalmol Strabismus 30:237–242

    PubMed  CAS  Google Scholar 

  50. Mellick A (1949) Convergence. An investigation into the normal standards of age groups. Br J Ophthalmol 33:755–763

    CAS  Google Scholar 

  51. Tait EF (1949) Fusional vergence. Am J Ophthalmol 32:1223–1230

    PubMed  CAS  Google Scholar 

  52. Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond Biol Sci 198:1–59

    CAS  Google Scholar 

  53. Hubel DH (1982) Exploration of the primary visual cortex, 1955–78. Nature 299:515–524

    PubMed  CAS  Google Scholar 

  54. Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 40:1392–1405

    PubMed  CAS  Google Scholar 

  55. Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. Nature 299:583–591

    PubMed  CAS  Google Scholar 

  56. Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409

    PubMed  CAS  Google Scholar 

  57. LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191:1–51

    PubMed  CAS  Google Scholar 

  58. Chino Y, Smith EL, Hatta S, et al (1996) Suppressive binocular interactions in the primary visual cortex (V1) of infant rhesus monkeys, Society for Neuroscience. Washington, D.C

    Google Scholar 

  59. Chino YM, Smith IIIEL, Hatta S, et al (1997) Postnatal development of binocular disparity sensitivity in neurons of the primate visual cortex. J Neurosci 17:296–307

    PubMed  CAS  Google Scholar 

  60. Horton JC, Hocking DR (1996) An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 16:1791–1807

    PubMed  CAS  Google Scholar 

  61. Horton JC, Hocking DR (1997) Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosci 17:3684–3709

    PubMed  CAS  Google Scholar 

  62. Endo M, Kaas JH, Jain N, et al (2000) Binocular cross-orientation suppression in the primary visual cortex (V1) of infant rhesus monkeys. Invest Ophthalmol Vis Sci 41:4022–4031

    PubMed  CAS  Google Scholar 

  63. Crawford MLJ, von Noorden GK (1979) The eff ects of short-term experimental strabismus on the visual system in Macaca mulatta. Invest Ophthalmol Vis Sci 18:496–505

    PubMed  CAS  Google Scholar 

  64. Crawford MLJ, Smith IIIEL, Harwerth RS, et al (1984) Stereoblind monkeys have few binocular neurons. Invest Ophthalmol Vis Sci 25:779–781

    PubMed  CAS  Google Scholar 

  65. Crawford ML, Harwerth RS, Smith EL, et al (1996) Loss of stereopsis in monkeys following prismatic binocular dissociation during infancy. Behav Brain Res 79:207–218

    PubMed  CAS  Google Scholar 

  66. Lowel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255:209–212

    PubMed  CAS  Google Scholar 

  67. Trachtenberg JT, Stryker MP (2001) Rapid anatomical plasticity of horizontal connections in the developing visual cortex. J Neurosci 21:3476–3482

    PubMed  CAS  Google Scholar 

  68. Tychsen L, Burkhalter A (1995) Neuroanatomic abnormalities of primary visual cortex in macaque monkeys with infantile esotropia: preliminary results. J Pediatr Ophthalmol Strabismus 32:323–328

    PubMed  CAS  Google Scholar 

  69. Tychsen L, Yildirim C, Anteby I, et al (2000) Macaque monkey as an ocular motor and neuroanatomic model of human infantile strabismus. In: Lennerstrand G, Ygge J (eds) Advances in strabismus research: basic and clinical aspects. Wenner-Gren International Series. Portland, London, U.K

    Google Scholar 

  70. Tychsen L, Wong AMF, Burkhalter A (2004) Paucity of horizontal connections for binocular vision in V1 of natu-rally-strabismic macaques: cytochrome-oxidase compartment specificity. J Comp Neurol 474:261–275

    PubMed  Google Scholar 

  71. Pasik T, Pasik P (1964) Optokinetic nystagmus: an unlearned response altered by section of chiasma and corpus callosum in monkeys. Nature 203:609–611

    PubMed  CAS  Google Scholar 

  72. Pasik P, Pasik Th(1977) Ocular movements in split-brain monkeys. Adv Neurol 18:125–135

    PubMed  CAS  Google Scholar 

  73. Dürsteler MR, Wurtz RH, Newsome WT (1987) Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J Neurophysiol 57:1262–1287

    PubMed  Google Scholar 

  74. Dürsteler MR, Wurtz RH (1988) Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST. J Neurophysiol 60:940–965

    PubMed  Google Scholar 

  75. Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248:190–222

    PubMed  CAS  Google Scholar 

  76. Kiorpes L, Walton PJ, O'Keefe L P, et al (1996) Eff ects of artificial early-onset strabismus on pursuit eye movements and on neuronal responses in area MT of macaque monkeys. J Neurosci 16:6537–6553

    PubMed  CAS  Google Scholar 

  77. Hatta S, Kumagami T, Qian J, et al (1998) Nasotemporal directional bias of V1 neurons in young infant monkeys. Invest Ophthalmol Vis Sci 39:2259–2267

    PubMed  CAS  Google Scholar 

  78. Tychsen L, Burkhalter A (1997) Nasotemporal asymmetries in V1: ocular dominance columns of infant, adult, and strabismic macaque monkeys. J Comp Neurol 388:32–46

    PubMed  CAS  Google Scholar 

  79. Boothe RG, Dobson V, Teller DY (1985) Postnatal development of vision in human and nonhuman primates. Ann Rev Neurosci 8:495–546

    PubMed  CAS  Google Scholar 

  80. Kawano K (1999) Ocular tracking: behavior and neuro-physiology. Curr Opin Neurobiol 9:467–473

    PubMed  CAS  Google Scholar 

  81. Maunsell JHR, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol 49:1148–1167

    PubMed  CAS  Google Scholar 

  82. Takemura A, Inoue Y, Kawano K, et al (2001) Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. J Neurophysiol 85:2245–2266

    PubMed  CAS  Google Scholar 

  83. Jampolsky A (1955) Characteristics of suppression in strabismus. Arch Ophthalmol 54:683

    CAS  Google Scholar 

  84. Pratt-Johnson JA, Tillson G (1984) Suppression in strabismus — an update. Br J Ophthalmol 68:174–178

    PubMed  CAS  Google Scholar 

  85. Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in primary visual cortex. J Neurosci 11:1800–1809

    PubMed  CAS  Google Scholar 

  86. Weliky M, Kandler K, Fitzpatrick D, et al (1995) Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. Neuron 15:541–552

    PubMed  CAS  Google Scholar 

  87. Deyoe EA, Trusk TC, Wong-Riley MT (1995) Activity correlates of cytochrome oxidase-defined compartments in granular and supragranular layers of primary visual cortex of the macaque monkey. Vis Neurosci 12:629–639

    PubMed  CAS  Google Scholar 

  88. Horton JC (1984) Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Philos Trans R Soc Lond B Biol Sci 304:199–253

    PubMed  CAS  Google Scholar 

  89. Wong-Riley MTT (1994) Primate visual cortex: dynamic metabolic organization and plasticity revealed by cyto-chrome oxidase. In: Peters A, Rockland KS (eds) Cerebral cortex. Plenum, New York

    Google Scholar 

  90. Fenstemaker SB, Kiorpes L, Movshon JA (2001) Eff ects of experimental strabismus on the architecture of macaque monkey striate cortex. J Comp Neurol 438:300–317

    PubMed  CAS  Google Scholar 

  91. Horton JC, Hocking DR, Kiorpes L (1997) Pattern of ocular dominance columns and cytochrome oxidase activity in a macaque monkey with naturally occurring anisome-tropic amblyopia. Vis Neurosci 14:681–689

    PubMed  CAS  Google Scholar 

  92. Wong AMF, Burkhalter A, Tychsen L (2005) Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys. J AAPOS 9:37–47

    PubMed  Google Scholar 

  93. Tychsen L (2007) Causing and curing infantile eostropia in primates: the role of de-correlated binocular input (an American ophthalmological society thesis). Trans Am Ophthalmol Soc 105:564–593

    PubMed  Google Scholar 

  94. Lewis TL, Maurer D (1992) T e development of the temporal and nasal visual fields during infancy. Vision Res 32:903–911

    PubMed  CAS  Google Scholar 

  95. Lewis TL, Maurer D, Blackburn K (1985) The development of young infants' ability to detect stimuli in the nasal visual field. Vision Res. 25:943–950

    PubMed  CAS  Google Scholar 

  96. Bowering ER, Maurer D, Lewis TL, et al (1993) Sensitivity in the nasal and temporal hemifields in children treated for cataract. Invest Ophthalmol Vis Sci 34:3501–3509

    PubMed  CAS  Google Scholar 

  97. Sireteanu R, Fronius M (1982) Naso-temporal asymmetries in human amblyopia: consequence of long-term interocular suppression. Vision Res 21:1055–1063

    Google Scholar 

  98. Sireteanu R, Fronius M (1989) Visual field losses in strabis-mic amblyopes. Klin Monatsbl Augenheilkd 194:261–269

    PubMed  CAS  Google Scholar 

  99. Horton JC, Hocking DR, Adams DL (1999) Metabolic mapping of suppression scotomas in striate cortex of macaques with experimental strabismus. J Neurosci 19:7111–7129

    PubMed  CAS  Google Scholar 

  100. Schor CM, Levi DM (1980) Disturbances of small-field horizontal and vertical optokinetic nystagmus in amblyo-pia. Invest Ophthalmol Vis Sci 19:668–683

    PubMed  CAS  Google Scholar 

  101. Tychsen L, Lisberger SG (1986) Maldevelopment of visual motion processing in humans who had strabismus with onset in infancy. J Neurosci 6:2495–2508

    PubMed  CAS  Google Scholar 

  102. Tychsen L, Rastelli A, Steinman S, et al (1996) Biases of motion perception revealed by reversing gratings in humans who had infantile-onset strabismus. Dev Med Child Neurol 38:408–422

    PubMed  CAS  Google Scholar 

  103. Hasany A, Wong A, Foeller P, et al (2008) Duration of binocular decorrelation in infancy predicts the severity of nasotemporal pursuit asymmetries in strabismic macaque monkeys. Neuroscience 156:403–411

    PubMed  CAS  Google Scholar 

  104. Richards M, Wong A, Foeller P, et al (2008) Duration of binocular decorrelation predicts the severity of latent (fusion maldevelopment) nystagmus in strabismic macaque monkeys. Invest Ophthalmol Vis Sci 49:1872–1878

    PubMed  Google Scholar 

  105. Yildirim C, Tychsen L (2000) Disjunctive optokinetic nystagmus in a naturally esotropic macaque monkey: interactions between nasotemporal asymmetries of versional eye movement and convergence. Ophthalmic Res 32:172–180

    PubMed  CAS  Google Scholar 

  106. Leigh RJ, Zee DS (1999) The neurology of eye movements. Oxford University, New York

    Google Scholar 

  107. Worth C (1903) Squint. Its causes, pathology, and treatment. Blakiston, Philadelphia

    Google Scholar 

  108. Chavasse F (1939) Worth's squint or the binocular reflexes and the treatment of strabismus. 7th Bailliere Tindall and Cox, London

    Google Scholar 

  109. Costenbader FD (1961) Infantile esotropia. Trans Am Ophthalmol Soc 59:397–429

    PubMed  CAS  Google Scholar 

  110. Ing M, Costenbader FD, Parks MM, et al (1966) Early surgery for congenital esotropia. Am J Ophthalmol 61:1419–1427

    PubMed  CAS  Google Scholar 

  111. Birch EE, Stager DR, Everett ME (1995) Random dot stere-oacuity following surgical correction of infantile esotropia. J Pediatr Ophthalmol Strabismus 32:231–235

    PubMed  CAS  Google Scholar 

  112. Birch EE, Fawcett S, Stager DR (2000) Why does early surgical alignment improve stereopsis outcomes in infantile esotropia? J AAPOS 4:10–14

    PubMed  CAS  Google Scholar 

  113. Ing MR (1995) Surgical alignment prior to six months of age for congenital esotropia. Trans Am Ophthalmol Soc 93:135–146

    PubMed  CAS  Google Scholar 

  114. Wright K W, Edelman PM, McVey JH, et al (1994) Highgrade stereo acuity after early surgery for congenital esotropia. Arch Ophthalmol 112:913–919

    PubMed  CAS  Google Scholar 

  115. Tychsen L, Wong AMF, Foeller P, et al (2004) Early versus delayed repair of infantile strabismus in macaque monkeys: II. Eff ects on motion visually evoked responses. Invest Ophthalmol Vis Sci 45:821–827

    PubMed  Google Scholar 

  116. Lang J (1968) Evaluation in small angle strabismus or microtopia, Strabismus symposium Gieben. Karger, Basel

    Google Scholar 

  117. Parks MM (1969) The monofixation syndrome. Tr Am Ophthalmol Soc 67:609–657

    CAS  Google Scholar 

  118. Tychsen L, Scott C (2003) Maldevelopment of convergence eye movements in macaque monkeys with small and large-angle infantile esotropia. Invest Ophthalmol Vis Sci 44:3358–3368

    PubMed  Google Scholar 

  119. Wong AMF, Lueder GT, Burkhalter A, et al (2000) Anomalous retinal correspondence: neuroanatomic mechanism in strabismic monkeys and clinical findings in stra-bismic children. J AAPOS 4:168–174

    PubMed  CAS  Google Scholar 

  120. Cumming BG, Parker AJ (1999) Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. J Neurosci 19:5602–6218

    PubMed  CAS  Google Scholar 

  121. Masson GS, Busettini C, Miles FA (1997) Vergence eye movements in response to binocular disparity without depth perception. Nature 389:283–286

    PubMed  CAS  Google Scholar 

  122. Mays LE (1983) Neurophysiological correlates of vergence eye movements. In: Schor CM, Ciuffreda KJ (eds) Vergence eye movements: basic and clinical aspects. Butterworths, Boston

    Google Scholar 

  123. Mays LE (1984) Neural control of vergence eye movements: convergence and divergence neurons in midbrain. J Neurophysiol 51:1091–1108

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tychsen, L. (2010). Visual Cortex Mechanisms of Strabismus: Development and Maldevelopment. In: Lorenz, B., Brodsky, M.C. (eds) Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85851-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85851-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85850-8

  • Online ISBN: 978-3-540-85851-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics