Skip to main content

Ordinal Embedding: Approximation Algorithms and Dimensionality Reduction

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2008, RANDOM 2008)

Abstract

This paper studies how to optimally embed a general metric, represented by a graph, into a target space while preserving the relative magnitudes of most distances. More precisely, in an ordinal embedding, we must preserve the relative order between pairs of distances (which pairs are larger or smaller), and not necessarily the values of the distances themselves. The relaxation of an ordinal embedding is the maximum ratio between two distances whose relative order is inverted by the embedding. We develop polynomial-time constant-factor approximation algorithms for minimizing the relaxation in an embedding of an unweighted graph into a line metric and into a tree metric. These two basic target metrics are particularly important for representing a graph by a structure that is easy to understand, with applications to visualization, compression, clustering, and nearest-neighbor searching. Along the way, we improve the best known approximation factor for ordinally embedding unweighted trees into the line down to 2. Our results illustrate an important contrast to optimal-distortion metric embeddings, where the best approximation factor for unweighted graphs into the line is O(n 1/2), and even for unweighted trees into the line the best is \(\tilde O(n^{1/3})\). We also show that Johnson-Lindenstrauss-type dimensionality reduction is possible with ordinal relaxation and ℓ1 metrics (and ℓ p metrics with 1 ≤ p ≤ 2), unlike metric embedding of ℓ1 metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Bădoiu, M., Demaine, E.D., Farach-Colton, M., Hajiaghayi, M., Sidiropoulos, A.: Ordinal embeddings of minimum relaxation: General properties, trees, and ultrametrics. ACM Transactions on Algorithms (to appear)

    Google Scholar 

  2. Alon, N., Frankl, P., Rödl, V.: Geometrical realization of set systems and probabilistic communication complexity. In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science, pp. 277–280. Portland, Oregon (1985)

    Google Scholar 

  3. Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in \(l\sb 1\). Journal of the ACM (electronic) 52(5), 766–788 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bădoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi, R., Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, January 2005, British Columbia, Canada (2005)

    Google Scholar 

  5. Bădoiu, M., Indyk, P., Sidiropoulos, A.: Approximation algorithms for embedding general metrics into trees. In: Proceedings of the 18th Symposium on Discrete Algorithms, January 2007, pp. 512–521 (2007)

    Google Scholar 

  6. Bilu, Y., Linial, N.: Monotone maps, sphericity and bounded second eigenvalue. arXiv:math.CO/0401293 (January 2004)

    Google Scholar 

  7. Cunningham, J.P., Shepard, R.N.: Monotone mapping of similarities into a general metric space. Journal of Mathematical Psychology 11, 335–364 (1974)

    Article  MATH  Google Scholar 

  8. Chor, B., Sudan, M.: A geometric approach to betweennes. SIAM Journal on Discrete Mathematics 11(4), 511–523 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Mathematica 139(1-2), 53–94 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Indyk, P., Matoušek, J.: Low-distortion embeddings of finite metric spaces. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 8, pp. 177–196. CRC Press, Boca Raton (2004)

    Google Scholar 

  11. Indyk, P.: Uncertainty principles, extractors, and explicit embeddings of l2 into l1. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 615–620 (2007)

    Google Scholar 

  12. Johnson, W.B., Lindenstrauss, J.: Extensions of lipshitz mapping into hilbert space. Contemporary Mathematics 26, 189–206 (1984)

    MATH  MathSciNet  Google Scholar 

  13. Johnson, W.B., Schechtman, G.: Very tight embeddings of subspaces of L p , 1 ≤ p < 2, into \(\ell^n_p\). Geometric and Functional Analysis 13(4), 845–851 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–28 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kruskal, J.B.: Non-metric multidimensional scaling. Psychometrika 29, 115–129 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee, J.R., Naor, A.: Embedding the diamond graph in L p and dimension reduction in L 1. Geometric and Functional Analysis 14(4), 745–747 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mendel, M., Naor, A.: Euclidean quotients of finite metric spaces. Advances in Mathematics 189(2), 451–494 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Opatrny, J.: Total ordering problem. SIAM J. Computing 8, 111–114 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schoenberg, I.J.: Metric spaces and positive definite functions. Transactions of the American Mathematical Society 44(3), 522–536 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shah, R., Farach-Colton, M.: On the complexity of ordinal clustering. Journal of Classification (to appear, 2004)

    Google Scholar 

  21. Shepard, R.N.: Multidimensional scaling with unknown distance function I. Psychometrika 27, 125–140 (1962)

    Article  MathSciNet  Google Scholar 

  22. Torgerson, W.S.: Multidimensional scaling I: Theory and method. Psychometrika 17(4), 401–414 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wells, J.H., Williams, L.R.: Embeddings and extensions in analysis. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-Verlag, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bădoiu, M., Demaine, E.D., Hajiaghayi, M., Sidiropoulos, A., Zadimoghaddam, M. (2008). Ordinal Embedding: Approximation Algorithms and Dimensionality Reduction. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics