Skip to main content

Development of the Root-Knot Nematode Feeding Cell

  • Chapter
Cell Biology of Plant Nematode Parasitism

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 15))

The root-knot nematode feeding cell is a remarkable example of the reprogramming of plant cells by biotrophic pathogens. With the aid of molecules secreted into plant cells from three esophageal gland cells, the root-knot nematode Meloidogyne sp. orchestrates a fundamental change in those cells surrounding its head in the plant root. These cells expand in volume over tenfold and become a virtual factory for the production of cytoplasm that is a rich source of nutrients for the nematode. Because of the large size of the cells, Treub (1887) coined the term “giant-cell” to describe them. Giant-cells have attracted the attention of biologists for over 100 years (reviewed in Christie 1936) and they continue to challenge investigators that are using modern techniques in molecular biology, biochemistry, and microscopy to answer long-held questions. This chapter examines giant-cells from a cell biologist's point of view, i.e., with an eye on identifying notable features of development at a cellular and subcellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M, Charlton WL, Urwin PE, McPherson MJ, Atkinson HJ (2005) RNA interference and plant parasitic nematodes. Trends Plant Sci 10:362–367

    Article  CAS  Google Scholar 

  • Beille L (1898) Sur les alterations produites par l'Heterodera radicicola sur les racines du Papaya gracilis. Compt Rend Assoc Franc Avanc Sci 27:413–416

    Google Scholar 

  • Berg RH (1999) Cytoplasmic bridge formation in the nodule apex of actinorhizal root nodules. Can J Bot 77:1351–1357

    Article  Google Scholar 

  • Berg RH, Erdos GW, Gritzali M, Brown RD Jr (1988) Enzyme-gold affinity labelling of cellulose. J Electron Microsc Tech 8:371–379

    Article  PubMed  CAS  Google Scholar 

  • Berg RH, Langenstein B, Silvester WB (1999) Development in the Datisca-Coriaria nodule type. Can J Bot 77:1334–1350

    Article  Google Scholar 

  • Bird AF (1961) The ultrastructure and histochemistry of a nematode-induced giant-cell. J Biophys Biochem Cytol 11:701–715

    Article  PubMed  CAS  Google Scholar 

  • Bird AF (1962) The inducement of giant-cells by Meloidogyne javanica. Nematologica 8:1–10

    Google Scholar 

  • Bird AF (1972) Quantitative studies on the growth of syncytia induced in plants by root-knot nematodes. Int J Parasitol 2:157–170

    Article  Google Scholar 

  • Bird AF (1973) Observations on chromosomes and nucleoli in syncytia induced by Meloidogyne javanica. Physiol Plant Pathol 3:387–391

    Article  Google Scholar 

  • Bird DMcK, Opperman CH, Williamson VM (2008) Plant infection by root-knot nematode. Plant Cell Monogr., doi:10.1007/7089_2008_31

    Google Scholar 

  • Bockenhoff A, Grundler FMW (1994) Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitology 109:249–254

    Article  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  PubMed  CAS  Google Scholar 

  • Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186

    Article  PubMed  CAS  Google Scholar 

  • Browning AJ, Gunning BES (1977) An ultrastructural and cytochemical study of the wall-membrane apparatus of transfer cells using freeze-substitution. Protoplasma 93:7–26

    Article  Google Scholar 

  • Chaumont F, Barrieu F, Herman EM, Chrispeels MJ (1998) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol 117:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Christie JR (1936) The development of root-knot nematode galls. Phytopathology 26:1–22

    Google Scholar 

  • Dahiya P, Brewin NJ (2000) Immunogold localization of callose and other cell wall components in pea nodule transfer cells. Protoplasma 214:210–218

    Article  Google Scholar 

  • Davis EL, Mitchum MG (2005) Nematodes. Sophisticated parasites of legumes. Plant Physiol 137:1182–1188

    CAS  Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2008) Parasitism genes: what they reveal about parasitism. Plant Cell Monogr., doi:10.1007/7089_2008_29

    Google Scholar 

  • de Almeida Engler J, De Vleesschauwer V, Burssens S, Celenza JL Jr, Inze D, Van Montagu M, Engler G, Gheysen G (1999) Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11:793–808

    Google Scholar 

  • de Almeida Engler J, Van Poucke K, Karimi M, De Groodt R, Gheysen G, Engler G, Gheysen G (2004) Dynamic cytoskeleton rearrangements in giant-cells and syncytia of nematode-infected roots. Plant J 38:12–26

    Article  PubMed  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  PubMed  CAS  Google Scholar 

  • Dropkin VH, Nelson PE (1960) The histopathology of root-knot nematode infections in soybeans. Phytopathology 50:442–447

    Google Scholar 

  • Endo BY (1987) Histopathology and ultrastructure of crops invaded by certain sedentary endoparasitic nematodes. In: Veech JA, Dickson DW (eds) Vistas on nematology: a commemoration of the twenty-fifth anniversary of the society of nematologists. Society of Nematologists, Hyattsville, Maryland, pp 196 – 210

    Google Scholar 

  • Evert RF (2006) Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function and development. Wiley, Hoboken

    Google Scholar 

  • Fester T, Berg RH, Taylor CG (2008) An easy method using glutaraldehyde-introduced fluorescence for the microscopic analysis of plant biotrophic interactions. J Microscopy 231:342–348

    Article  CAS  Google Scholar 

  • Gheysen G, Fenoll C (2002) Gene expression in nematode feeding sites. Annu Rev Phytopathol 40:191–219

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Mitchum MG (2008) Molecular insights in the susceptible plant response to nematode infection. Plant Cell Monogr., doi:10.1007/7089_2008_35

    Google Scholar 

  • Goverse A, Biesheuvel J, Wijers G-J, Gommers FJ, Bakker J, Schots A, Helder J (1998) In planta monitoring of the activity of two constitutive promoters, CaMV 35S and TR2, in developing feeding cells induced by Globodera rostochiensis using green fluorescent protein in combination with confocal laser scanning microscopy. Physiol Mol Plant Pathol 52:275–284

    Article  CAS  Google Scholar 

  • Goverse A, de Engler JA, Verhees J, van der Krol S, Helder JH, Gheysen G (2000) Cell cycle activation by plant-parasitic nematodes. Plant Mol Biol 43:747–761

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES, Pate JS (1969) Transfer cells: plant cells with wall ingrowths, specialized in relation to short distance transport of solutes - their occurrence, structure, and development. Protoplasma 68:107–133

    Article  Google Scholar 

  • Gunning BES, Pate JS (1974) Transfer cells. In: Robards AW (ed) Dynamics aspects of plant ultrastructure. McGraw-Hill Book Company, Maidenhead Berkshire England, pp 441–480

    Google Scholar 

  • Hammes UZ, Schachtman DP, Berg RH, Nielsen E, Koch W, McIntyre LM, Taylor CG (2005) Nematode-induced changes of transporter gene expression in Arabidopsis roots. Mol Plant Microbe Interact 18:1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Hayat MA (1981) Principles and techniques of electron microscopy. vol. 1 University Park Press, Baltimore

    Google Scholar 

  • Hess MW (2007) Cryopreparation methodology for plant cell biology. In: McIntosh JR (ed) Methods in cell biology, vol. 79, Cellular Electron Microscopy. Academic Press, San Diego, pp 57–100

    Google Scholar 

  • Huang CS (1985) Formation, anatomy and physiology of giant-cells induced by root-knot nematodes. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne, vol. 1, Biology & Control. North Carolina State University Graphics, Raleigh, pp 155–164

    Google Scholar 

  • Huang CS, Maggenti AR (1969) Mitotic aberrations and nuclear changes of developing giant-cells in Vicia faba caused by root-knot nematode, Meloidogyne javanica. Phytopathology 59:447–455

    Google Scholar 

  • Huang G, Gao B, Maier T, Allen R, Davis EL, Baum TJ, Hussey RS (2003) A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol Plant Microbe Interact 16:376–381

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2006) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mole Plant Microbe Interact 19:463–470

    Article  CAS  Google Scholar 

  • Hussey RS, Grundler FMW (1998) Nematode parasitism of plants. In: Perry RN, Wright DJ (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes. CAN International, pp 213–243

    Google Scholar 

  • Hussey RS, Mims CW (1990) Ultrastructure of esophageal glands and their secretory granules in the root-knot nematode Meloidogyne incognita. Protoplasma 156:9–18

    Article  Google Scholar 

  • Hussey RS, Mims CW (1991) Ultrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematode Meloidogyne incognita. Protoplasma 162:99–107

    Article  Google Scholar 

  • Hussey RS, Mims CW, Westcott SW (1992) Ultrastructure of root cortical cells parasitized by the ring nematode Criconemella xenoplax. Protoplasma 167:55–65

    Article  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322

    Article  PubMed  CAS  Google Scholar 

  • Jones MGK, Dropkin VH (1975) Cellular alterations induced in soybean roots by three endoparasitic nematodes. Physiol Plant Pathol 5: 119–124

    Article  Google Scholar 

  • Jones MGK, Gunning BES (1976) Transfer cells and nematode induced giant-cells in Helianthemum. Protoplasma 87:273–279

    Article  Google Scholar 

  • Jones MGK, Northcote DH (1972a) Nematode-induced syncytium — a multinucleate transfer cell. J Cell Sci 10:789–809

    CAS  Google Scholar 

  • Jones MGK, Northcote DH (1972b) Multinucleate transfer cells induced in coleus roots by the root-knot nematode, Meloidgyne arenaria. Protoplasma 75:381–395

    Article  Google Scholar 

  • Jones MGK, Payne HL (1977) Cytokinesis in Impatiens balsamina and the effect of caffeine. Cytobios 20:79–91

    Google Scholar 

  • Jones MGK, Payne HL (1978) Early stages of nematode-induced giant-cell formation in roots of Impatiens balsamina. J Nematol 10:70–84

    CAS  PubMed  Google Scholar 

  • Koltai H, Dhandaydham M, Opperman C, Thomas J, Bird D (2001) Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Mol Plant Microbe Interact 14:1168–1177

    Article  PubMed  CAS  Google Scholar 

  • Leapman RD, Aronova MA (2007) Localizing specific elements bound to macromolecules by EFTEM. In: McIntosh JR (ed) Methods in Cell Biology, vol 79, Cellular electron microscopy. Academic Press, San Diego, pp 593–613

    Google Scholar 

  • Li L, Fester T, Tylor CG (2008) Transcriptomic analysis of nematode infestation. Plant Cell Monogr., doi:10.1007/7089_2008_36

    Google Scholar 

  • Lloyd CW (1991) Cytoskeletal elements of the phragmosome establish the division plane in vacu-olated higher plant cells. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, San Diego, pp 245–257

    Google Scholar 

  • Mathesius U (2003) Conservation and divergence of signalling pathways between roots and soil microbes – the Rhizobium -legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil 255:105–119

    Article  CAS  Google Scholar 

  • McClure MA, von Mende N (1987) Induced salivation in plant-parasitic nematodes. Physiol Biochem 77:1463–1469

    Google Scholar 

  • Nemec B (1910) Das Problem der Befruchtungsvorgange und andere zytologische Fragen. In: Vielkernige Riesenzellen in Heterodera-Gallen, Part 4. Gebruder Borntraeger, Berlin, pp 151 – 173

    Google Scholar 

  • Nemec B (1911) UberdieNematodenkrankheitenderZuckerrube. ZeitschriftfurPflanzenkrankheiten 21:1–10

    Google Scholar 

  • Nemec B (1932) Uber die Gallen von Heterodera schachtii auf der Zuckerrube. Studies from the Plant Physiological Laboratory of Charles University, Prague 4:1–14

    Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2002) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  CAS  Google Scholar 

  • Opperman CH, Taylor CG, Conkling MA (1994) Root-knot nematode-directed expression of a plant root-specific gene. Science 263:221–223

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Austin JR (2007) Visualization of membrane-cytoskeletal interactions during plant cytokinesis. In: McIntosh JR (ed) Methods in cell biology, vol 79, Cellular electron microscopy. Academic Press, San Diego, pp 221–240

    Google Scholar 

  • Paulson RE, Webster JM (1970) Giant-cell formation in tomato roots caused by Meloidgyne incognita and Meloidogyne hapla (Nematoda) infection. A light and electron microscope study. Can J Bot 48:271–276

    Google Scholar 

  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JW, Shaw PJ (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  PubMed  CAS  Google Scholar 

  • Pontes O, Pikaard CS (2008) siRNA and miRNA processing: new functions for Cajal bodies. Curr Opin Genet Dev 18:1–7

    Article  CAS  Google Scholar 

  • Razak RA, Evans AAF (1976) An intracellular tube associated with feeding by Rotylenchulus reinforms on cowpea root. Nematologica 22:182–189

    Google Scholar 

  • Rebois RV (1980) Ultrastructure of a feeding peg and tube associated with Rotylenchulus reni-formis in cotton. Nematologica 26:396–405

    Google Scholar 

  • Rebois RV, Madden PA, Eldridge BJ (1975) Some ultrastructure changes induced in resistant and susceptible soybean roots following infection by Rotylenchulus reniformis. J Nematol 7:122–139

    CAS  PubMed  Google Scholar 

  • Rumpenhorst HJ (1984) Intracellular feeding tubes associated with sedentary plant parasitic nematodes. Nematologica 30:77–85

    Article  Google Scholar 

  • Sarda X, Tousch D, Ferrare K, Cellier F, Alcon C, Dupuis JM, Casse F, Lamaze T (1999) Characterization of closely related d -TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air. Plant Mol Biol 40:179–191

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Brown JW (2004) Plant nuclear bodies. Curr Opin Plant Biol 7:614–620

    Article  PubMed  CAS  Google Scholar 

  • Sijmons PC, Grundler FMW, von Mende N, Burrows PR, Wyss U (1991) Arabidopsis thaliana as a new model host for plant-parasitic nematodes. Plant J 1:245–254

    Article  Google Scholar 

  • Sinnott EW, Bloch R (1940) Cytoplasmic behaviour during division of vacuolate plant cells. Proc Natl Acad Sci USA 26:223–227

    Article  PubMed  CAS  Google Scholar 

  • Sobczak M, Golinowski W (2008) Structure of cyst nematode feeding sites. Plant Cell Monogr., doi:10.1007/7089_2008_38

    Google Scholar 

  • Sobczak M, Golinowski W, Grundler FMW (1999) Ultrastructure of feeding plugs and feeding tubes formed by Heterodera schachtii. Nematology 1:363–374

    Article  Google Scholar 

  • Staehelin LA, Moore I (1995) The plant golgi apparatus: structure, functional organization and trafficking mechanisms. Annu Rev Plant Physiol 46:261–288

    CAS  Google Scholar 

  • Tischler G (1901) Ueber Heterodera-Gallen an den Wurzeln von Circaea luteiana L. Ber Deut Bot Gesell 19:95–107

    Google Scholar 

  • Treub M (1887) Quelques mots sure les effets du parasitisme de l'Heterodera javanica dans les racines de la canne a sucre. Ann Jard Bot Buitenzorg 6:93–96

    Google Scholar 

  • Urwin PE, Moller SG, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Continual green-fluorescent protein monitoring of cauliflower mosaic virus 35S promoter activity in nematode-induced feeding cells in Arabidopsis thaliana. Mol Plant Microbe Interact 10:394–400

    Article  PubMed  CAS  Google Scholar 

  • van Brussel AA, Bakhuizen R, van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJ, Kijne JW (1992) Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of R hizobium. Science 257:70–72

    Article  PubMed  Google Scholar 

  • Wang X, Allen R, Ding X, Goellner M, Maier T, de Boer JM, Baum TJ, Hussey RS, Davis EL (2001) Signal peptide-selection of cDNA cloned directly from the esophageal gland cells of the soybean cyst nematode Heterodera glycines. Mol Plant Microbe Interact 14:536–544

    Article  PubMed  CAS  Google Scholar 

  • Weerasinghe RR, Bird DM, Allen NS (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acad Sci USA 102:3147–3152

    Article  PubMed  CAS  Google Scholar 

  • Wiggers RJ, Starr JL, Price HJ (1990) DNA content and variation in chromosome number in plant cells affected by Meloidogyne incognita and M. arenaria. Phytopathology 80:1391–1395

    Article  Google Scholar 

  • Wyss U, Zunke U (1986) Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host roots. Revue Nematol 9:153–165

    Google Scholar 

  • Wyss U, Grundler FMW, Munch A (1992) The parasitic behaviour of second-stage juveniles of Meloidogyne incognita in roots of Arabidopsis thaliana. Nematologica 38:98–111

    Google Scholar 

  • Yang WC, de Blank C, Meskiene I, Hirt H, Bakker J, van Kammen A, Franssen H, Bisseling T (1994) Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6:1415–1426

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Howard Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berg, R.H., Fester, T., Taylor, C.G. (2009). Development of the Root-Knot Nematode Feeding Cell. In: Berg, R.H., Taylor, C.G. (eds) Cell Biology of Plant Nematode Parasitism. Plant Cell Monographs, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85215-5_5

Download citation

Publish with us

Policies and ethics