Skip to main content

On the Computational Power of Biochemistry

  • Conference paper
Algebraic Biology (AB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5147))

Included in the following conference series:

Abstract

We explore the computational power of biochemistry with respect to basic chemistry, identifying complexation as the basic mechanism that distinguishes the former from the latter. We use two process algebras, the Chemical Ground Form (CGF) which is equivalent to basic chemistry, and the Biochemical Ground Form (BGF) which is a minimalistic extension of CGF with primitives for complexation. We characterize an expressiveness gap: CGF is not Turing complete while BGF supports a finite precise encoding of Random Access Machines, a well-known Turing powerful formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busi, N., Gorrieri, R.: On the Computational Power of Brane Calculi. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 16–43. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Cardelli, L.: Artificial Biochemistry. In: Proc. of Algorithmic Bioprocesses. LNCS (to appear, 2008), http://lucacardelli.name

  3. Cardelli, L.: On Process Rate Semantics. Theoretical Computer Science (in press, 2008), http://dx.doi.org/10.1016/j.tcs.2007.11.012

  4. Cardelli, L., Pradalier, S.: Where Membranes Meet Complexes. In: Proc. of Concurrent Models in Molecular Biology (BioConcur. 2005) (2005)

    Google Scholar 

  5. Credi, A., Garavelli, M., Laneve, C., Pradalier, S., Silvi, S., Zavattaro, G.: Modelization and Simulation of Nano Devices in nano-kappa Calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 168–183. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Danos, V., Feret, J., Fontana, W., Krivine, J.: Kappa Factory (2007), http://www.lix.polytechnique.fr/~krivine/kappaFactory.html

  7. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kitano, H., Funahashi, A., Matsuoka, Y., Oda, K.: Using process diagrams for the graphical representation of biological networks. Nature Biotechnolgy 23, 961–966 (2005)

    Article  Google Scholar 

  9. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Molecular biology of the cell 17(1), 1–13 (2006)

    Article  Google Scholar 

  10. Liekens, A.M.L., Fernando, C.T.: Turing complete catalytic particle computers. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1202–1211. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Magnasco, M.O.: Chemical Kinetics is Turing Universal. Physical Review Letters 78, 1190–1193 (1997)

    Article  Google Scholar 

  12. McQuarrie, D.A.: Stochastic approach to chemical kinetics. Journal of Applied Probability 4, 413–478 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  14. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  15. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Google Scholar 

  16. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with Finite Stochastic Chemical Reaction Networks. Natural Computing (in press, 2008), http://dx.doi.org/10.1007/s11047-008-9067-y

  18. Zavattaro, G., Cardelli, L.: Termination Problems in Chemical Kinetics (2008), http://lucacardelli.name

Download references

Author information

Authors and Affiliations

Authors

Editor information

Katsuhisa Horimoto Georg Regensburger Markus Rosenkranz Hiroshi Yoshida

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardelli, L., Zavattaro, G. (2008). On the Computational Power of Biochemistry. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds) Algebraic Biology. AB 2008. Lecture Notes in Computer Science, vol 5147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85101-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85101-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85100-4

  • Online ISBN: 978-3-540-85101-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics