Skip to main content

Peripheral Mechanisms I: Plasticity of Peripheral Pathways

  • Chapter
Pharmacology and Therapeutics of Cough

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 187))

Abstract

Cough plays a vital role in protecting the lower airways from inhaled irritants, pollutants, and infectious agents. The cough reflex exhibits remarkable plasticity, such that in the context of infectious or inflammatory respiratory diseases such as asthma, chronic bronchitis, and idiopathic pulmonary fibrosis the cough reflex can become dysregulated, leading to a chronic cough. A chronic, nonproductive(dry) cough can rob sufferers of quality of life. Plasticity of the cough reflex likely involves multiple intersecting pathways within the airways, the peripheral nerves that supply them, and the central nervous system. While further studies are needed to determine the presence and relevance of many of these specific pathways in cough associated with chronic respiratory disease, the last decade has yielded unprecedented insight into the molecular identity of the ion channels and associated proteins that initiate and conduct action potentials in the primary sensory nerves involved in reflexes such as cough. We now know, for instance, that members of the transient receptor potential superfamily of nonselective cation channels function as transducers that convert specific external stimuli into neuronal activation. We also know that certain Na+ and K+ channels play specialized roles in regulating action potential discharge in irritant-sensing afferent nerves. In this chapter, we summarize the available information regarding factors that may modulate afferent neuron function acutely, via posttranslational modifications and over the longer term through neurotrophin-dependent alterations of the transcriptional programs of adult sensory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accili EA, Proenza C, Baruscotti M, DiFrancesco D (2002) From Funny Current to HCN Channels: 20 Years of Excitation. News Physiol Sci 17:32–37

    PubMed  CAS  Google Scholar 

  • Ahmad S, Dahllund L, Eriksson AB, Hellgren D, Karlsson U, Lund PE, Meijer IA, Meury L, Mills T, Moody A, Morinville A, Morten J, O'Donnell D, Raynoschek C, Salter H, Rouleau GA, Krupp JJ (2007) A stop codon mutation in SCN9A causes lack of pain sensation. Hum Mol Genet 16:2114–2121

    PubMed  CAS  Google Scholar 

  • Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB,Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodiumchannel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 26:3864–3874

    PubMed  CAS  Google Scholar 

  • Amaya F, Shimosato G, Nagano M, Ueda M, Hashimoto S, Tanaka Y, Suzuki H, Tanaka M (2004)NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur J Neurosci 20(9):2303–2310

    PubMed  Google Scholar 

  • Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, Chessell IP, Tate S, Green PJ, Woolf CJ (2006) The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26:12852–12860

    PubMed  CAS  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A(2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.Neuron 41:849–857

    PubMed  CAS  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI,Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    PubMed  CAS  Google Scholar 

  • Bielefeldt K, Ozaki N, Gebhart GF (2003) Role of nerve growth factor in modulation of gastric afferent neurons in the rat. Am J Physiol Gastrointest Liver Physiol 284:G499–G507

    PubMed  CAS  Google Scholar 

  • Braun A, Lommatzsch M, Mannsfeldt A, Neuhaus-Steinmetz U, Fischer A, Schnoy N, Lewin GW,Renz H (1999) Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol. 21(4):537–546

    PubMed  CAS  Google Scholar 

  • Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol (Lond) 557:543–558

    CAS  Google Scholar 

  • Carr MJ (2007) Plasticity of the afferent innervation of the airways: The role of ion channels. Pulm Pharmacol Ther 20:412–415

    PubMed  CAS  Google Scholar 

  • Carr MJ, Hunter DD, Jacoby DB, Undem BJ (2002) Expression of tachykinins in nonnociceptive vagal afferent neurons during respiratory viral infection in guinea pigs. Am J Respir Crit Care Med 165:1071–1075

    PubMed  Google Scholar 

  • Carr MJ, Kollarik M, Meeker SN, Undem BJ (2003) A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J Pharmacol Exp Ther 304:1275–1279

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    PubMed  CAS  Google Scholar 

  • Christensen AP, Corey DP (2007) TRP channels in mechanosensation: Direct or indirect activation? Nat Rev Neurosci 8:510–521

    PubMed  CAS  Google Scholar 

  • Christian EP, Togo J, Naper KE (1994) Guinea pig visceral C-fiber neurons are diverse with respect to the K+ currents involved in action-potential repolarization. J Neurophysiol 71:561–574

    PubMed  CAS  Google Scholar 

  • Chuang Hh, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    PubMed  CAS  Google Scholar 

  • Chuaychoo B, Hunter DD, Myers AC, Kollarik M, Undem BJ (2005) Allergen-induced substance P synthesis in large-diameter sensory neurons innervating the lungs. J Allergy Clin Immunol 116:325–331

    PubMed  CAS  Google Scholar 

  • Clapham DE, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427–450

    PubMed  CAS  Google Scholar 

  • Coleridge HM, Coleridge JC, Luck JC (1965) Pulmonary afferent fibres of small diameter stimulated by capsaicin and by hyperinflation of the lungs. J Physiol (Lond) 179:248–262

    CAS  Google Scholar 

  • Coleridge HM, Coleridge JC, Green JF, Parsons GH (1992) Pulmonary C-fiber stimulation by capsaicin evokes reflex cholinergic bronchial vasodilation in sheep. J Appl Physiol 72:770–778

    PubMed  CAS  Google Scholar 

  • Cordoba-Rodriguez R, Moore KA, Kao JPY, Weinreich D (1999) Calcium regulation of a slow post-spike hyperpolarization in vagal afferent neurons. PNAS 96:7650–7657

    PubMed  CAS  Google Scholar 

  • Coull JAM, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, Koninck PD, Koninck YD (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942

    PubMed  CAS  Google Scholar 

  • Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    PubMed  CAS  Google Scholar 

  • Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19:RC43

    PubMed  CAS  Google Scholar 

  • Cummins TR, Black JA, Dib-Hajj SD, Waxman SG (2000) Glial-derived neurotrophic factor up-regulates expression of functional SNS and NaN sodium channels and their currents in axo-tomized dorsal root ganglion neurons. J Neurosci 20:8754–8761

    PubMed  CAS  Google Scholar 

  • Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    PubMed  CAS  Google Scholar 

  • Dang K, Bielefeldt K, Gebhart GF (2004) Gastric ulcers reduce A-type potassium currents in rat gastric sensory ganglion neurons. Am J Physiol Gastrointest Liver Physiol 286:G573–579

    PubMed  CAS  Google Scholar 

  • Davenport PW, Bolser DC, Vickroy T, Berry RB, Martin AD, Hey JA, Danzig M (2007) The effect of codeine on the Urge-to-Cough response to inhaled capsaicin. Pulm Pharmacol Ther 20: 338–346

    PubMed  CAS  Google Scholar 

  • Davis B, Roberts AM, Coleridge HM, Coleridge JC (1982) Reflex tracheal gland secretion evoked by stimulation of bronchial C-fibers in dogs. J Appl Physiol 53:985–991

    PubMed  CAS  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    PubMed  CAS  Google Scholar 

  • Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci USA 95:8963–8968

    PubMed  CAS  Google Scholar 

  • Dib-Hajj SD, Tyrrell L, Cummins TR, Black JA, Wood PM, Waxman SG (1999) Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons. FEBS Lett 462:117–120

    PubMed  CAS  Google Scholar 

  • DiFrancesco D (2006) Serious workings of the funny current. Prog Biophys Mol Biol 90:13–25

    PubMed  CAS  Google Scholar 

  • Diogenes A, Akopian AN, Hargreaves KM (2007) NGF Up-regulates TRPA1: Implications for orofacial pain. J Dent Res 86:550–555

    PubMed  CAS  Google Scholar 

  • Djouhri L, Newton R, Levinson SR, Berry CM, Carruthers B, Lawson SN (2003) Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav1.7 (PN1) Na+ channel alphasubunit protein. J Physiol (Lond) 546:565–576

    CAS  Google Scholar 

  • Doan TN, Kunze DL (1999) Contribution of the hyperpolarization-activated current to the resting membrane potential of rat nodose sensory neurons. J Physiol (Lond) 514:125–138

    CAS  Google Scholar 

  • Doan TN, Stephans K, Ramirez AN, Glazebrook PA, Andresen MC, Kunze DL (2004) Differential distribution and function of hyperpolarization-activated channels in sensory neurons and mechanosensitive fibers. J Neurosci 24:3335–3343

    PubMed  CAS  Google Scholar 

  • Drenth JPH, te Morsche RHM, Guillet G, Taieb A, Kirby RL, Jansen JBMJ (2005) SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels. J Investig Dermatol 124:1333–1338

    PubMed  CAS  Google Scholar 

  • Drew LJ (2007) High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS One 2:e515

    PubMed  Google Scholar 

  • Ekberg J, Jayamanne A, Vaughan CW, Aslan S, Thomas L, Mould J, Drinkwater R, Baker MD, Abrahamsen B, Wood JN, Adams DJ, Christie MJ, Lewis RJ (2006) {micro}O-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. PNAS 103:17030–17035

    PubMed  CAS  Google Scholar 

  • Elitt CM, McIlwrath SL, Lawson JJ, Malin SA, Molliver DC, Cornuet PK, Koerber HR, Davis BM, Albers KM (2006) Artemin overexpression in skin enhances expression of TRPV1 and TRPA1 in cutaneous sensory neurons and leads to behavioral sensitivity to heat and cold. J Neurosci 26:8578–8587

    PubMed  CAS  Google Scholar 

  • Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, Ostman J, Klugbauer N, Wood JN, Gardiner RM, Rees M (2006) SCN9A mutations in paroxysmal extreme pain disorder: Allelic variants underlie distinct channel defects and phenotypes. Neuron 52: 767–774

    PubMed  CAS  Google Scholar 

  • Fertleman CR, Ferrie CD, Aicardi J, Bednarek NAF, Eeg-Olofsson O, Elmslie FV, Griesemer DA, Goutieres F, Kirkpatrick M, Malmros INO, Pollitzer M, Rossiter M, Roulet-Perez E, Schubert R, Smith VV, Testard H, Wong V, Stephenson JBP (2007) Paroxysmal extreme pain disorder (previously familial rectal pain syndrome). Neurology 69:586–595

    PubMed  CAS  Google Scholar 

  • Fischer A, McGregor GP, Saria A, Philippin B, Kummer W (1996) Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation. J Clin Invest 98:2284–2291

    PubMed  CAS  Google Scholar 

  • Forsberg K, Karlsson J-A, Theodorsson E, Lundberg JM, Persson CGA (1988) Cough and bron-choconstriction mediated by capsaicin-sensitive sensory neurons in the guinea-pig. Pulm Pharmacol 1:33–39

    PubMed  CAS  Google Scholar 

  • Fox AJ, Barnes PJ, Urban L, Dray A (1993) An in vitro study of the properties of single vagal afferents innervating guinea-pig airways. J Physiol (Lond) 469:21–35

    CAS  Google Scholar 

  • Fox AJ, Barnes PJ, Venkatesan P, Belvisi MG (1997) Activation of large conductance potassium channels inhibits the afferent and efferent function of airway sensory nerves in the Guinea pig. J Clin Invest 99:513–519

    PubMed  CAS  Google Scholar 

  • Fuller RW (1991) Pharmacology of inhaled capsaicin in humans. Respir Med 85:31–34

    PubMed  Google Scholar 

  • Fuller RW, Dixon CM, Barnes PJ (1985) Bronchoconstrictor response to inhaled capsaicin in humans. J Appl Physiol 58:1080–1084

    PubMed  CAS  Google Scholar 

  • Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F, Doherty EM, Norman MH, Wild KD, Bannon AW, Louis JC, Treanor JJS (2005) AMG 9810 [(E)-3-(4-t-Butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther 313:474–484

    PubMed  CAS  Google Scholar 

  • Ghatta S, McAlexander MA, Carr MJ (2007) Characterization of vagal afferent neurons from NaV1.9 −/− and NaV1.9 +/+ mice. Neuroscience Meeting Planner, Society for Neuroscience, 2007 Online

    Google Scholar 

  • Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T, Payne B, Radomski C, Donaldson G, Ives E, Cox J, Younghusband HB, Green R, Duff A, Boltshauser E, Grinspan GA, Dimon JH, Sibley BG, Andria G, Toscano E, Kerdraon J, Bowsher D, Pimstone SN, Samuels ME, Sherrington R, Hayden MR (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71:311–319

    PubMed  CAS  Google Scholar 

  • Green JF, Schmidt ND, Schultz HD, Roberts AM, Coleridge HM, Coleridge JC (1984) Pulmonary C-fibers evoke both apnea and tachypnea of pulmonary chemoreflex. J Appl Physiol 57: 562–567

    PubMed  CAS  Google Scholar 

  • Groneberg DA, Niimi A, Dinh QT, Cosio B, Hew M, Fischer A, Chung KF (2004) Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Respir Crit Care Med 170:1276–1280

    PubMed  Google Scholar 

  • Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O'Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS (2003) International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: Potassium channels. Pharmacol Rev 55:583–586

    PubMed  CAS  Google Scholar 

  • Helke CJ (2005) Vagal afferent neurons: Neurotrophic factors and epigenetic influences. In: Undem BJ, Weinreich D (eds) Advances in vagal afferent neurobiology. CRC, Boca Raton, pp 27–74

    Google Scholar 

  • Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na + current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86:1351–1364

    PubMed  CAS  Google Scholar 

  • Hinman A, Chuang Hh, Bautista DM, Julius D (2006) TRP channel activation by reversible cova-lent modification. PNAS 103:19564–19568

    PubMed  CAS  Google Scholar 

  • Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U (2000) Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances. PNAS 97:6155–6160

    PubMed  CAS  Google Scholar 

  • Ingram SL, Williams JT (1996) Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons. J Physiol (Lond) 492:97–106

    CAS  Google Scholar 

  • Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. PNAS 104:8520–8525

    PubMed  CAS  Google Scholar 

  • Joad JP, Munch PA, Bric JM, Evans SJ, Pinkerton KE, Chen CY, Bonham AC (2004) Passive smoke effects on cough and airways in young guinea pigs: Role of brainstem substance P. Am J Respir Crit Care Med 169:499–504

    PubMed  Google Scholar 

  • Jordt SE, Bautista DM, Chuang Hh, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    PubMed  CAS  Google Scholar 

  • Kollarik M, Undem BJ (2004) Activation of bronchopulmonary vagal afferent nerves with brady-kinin, acid and vanilloid receptor agonists in wild-type and TRPV1−/− mice. J Physiol (Lond) 555:115–123

    CAS  Google Scholar 

  • Kollarik M, Dinh QT, Fischer A, Undem BJ (2003) Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse. J Physiol (Lond) 551:869–879

    CAS  Google Scholar 

  • Kwong K, Lee LY (2005) Prostaglandin E2 potentiates a TTX-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurones. J Physiol (Lond) 564:437–450

    CAS  Google Scholar 

  • Kwong K, Wu ZX, Kashon ML, Krajnak KM, Wise PM, Lee LY (2001) Chronic smoking enhances tachykinin synthesis and airway responsiveness in Guinea pigs. Am J Respir Cell Mol Biol 25:299–305

    PubMed  CAS  Google Scholar 

  • Kwong K, Carr MJ, Undem BJ (2007) TTX-R INa expression in sensory neurons innervating the lungs correlates with their embryonic origin in adult Guinea pigs. Am J Respir Crit Care Med 175:A666

    Google Scholar 

  • Laird JMA, Souslova V, Wood JN, Cervero F (2002) Deficits in visceral pain and referred hyper-algesia in Nav1.8 (SNS/PN3)-null mice. J Neurosci 22:8352–8356

    PubMed  CAS  Google Scholar 

  • Lalloo UG, Fox AJ, Belvisi MG, Chung KF, Barnes PJ (1995) Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs. J Appl Physiol 79: 1082–1087

    PubMed  CAS  Google Scholar 

  • Lambert RC, Maulet Y, Mouton J, Beattie R, Volsen S, De Waard M, Feltz A (1997) T-type Ca2+ current properties are not modified by Ca2+ channel beta ásubunit depletion in nodosus ganglion neurons. J Neurosci 17:6621–6628

    PubMed  CAS  Google Scholar 

  • Lee P, Eccles R (2004) Cough induced by mechanical stimulation of the upper airway in humans. Acta Oto-Laryngol 124:720–725

    Google Scholar 

  • Lee BP, Morton RF, Lee LY (1992) Acute effects of acrolein on breathing: Role of vagal bron-chopulmonary afferents. J Appl Physiol 72:1050–1056

    PubMed  CAS  Google Scholar 

  • Lee YJ, Zachrisson O, Tonge DA, McNaughton PA (2002) Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons. Mol Cell Neurosci 19(2):186–200

    PubMed  CAS  Google Scholar 

  • Lee MG, MacGlashan DW, Jr., Undem BJ (2005) Role of chloride channels in bradykinin-induced guinea pig airway vagal C-fibre activation. J Physiol (Lond) 566:205–212

    CAS  Google Scholar 

  • Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R (1994) Mast cells synthesize, store and release nerve growth factor. Proc Natl Acad Sci U S A 91(9):3739– 3743

    PubMed  CAS  Google Scholar 

  • Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007a) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    CAS  Google Scholar 

  • Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A (2007b) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    CAS  Google Scholar 

  • Mamet J, Lazdunski M, Voilley N (2003) How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons. J Biol Chem 278: 48907–48913

    PubMed  CAS  Google Scholar 

  • Mazzone SB, Geraghty DP (2000) Respiratory actions of tachykinins in the nucleus of the solitary tract: Characterization of receptors using selective agonists and antagonists. Br J Pharmacol 129:1121–1131

    PubMed  CAS  Google Scholar 

  • Mazzone SB, McGovern AE (2006) Na+-K+-2Cl- cotransporters and Cl- channels regulate citric acid cough in guinea pigs. J Appl Physiol 101:635–643

    PubMed  CAS  Google Scholar 

  • Mazzone SB, Mori N, Canning BJ (2005) Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs. J Physiol 569:559–573

    PubMed  CAS  Google Scholar 

  • Mazzone SB, McLennan L, McGovern AE, Egan GF, Farrell MJ (2007a) Representation of capsaicin-evoked Urge-to-Cough in human brain using functional MRI. Am J Respir Crit Care Med 176:327–332

    Google Scholar 

  • Mazzone SB, McLennan L, McGovern AE, Egan GF, Farrell MJ (2007b) Representation of Capsaicin-evoked Urge-to-Cough in the human brain using functional magnetic resonance imaging. Am J Respir Crit Care Med 176:327–332

    Google Scholar 

  • McAlexander MA, Undem BJ (2000) Potassium channel blockade induces action potential generation in guinea-pig airway vagal afferent neurones. J Auton Nerv Syst 78:158–164

    PubMed  CAS  Google Scholar 

  • McAlexander MA, Myers AC, Undem BJ (1999) Adaptation of guinea-pig vagal airway afferent neurones to mechanical stimulation. J Physiol (Lond) 521:239–247

    CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    PubMed  CAS  Google Scholar 

  • McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. PNAS 104:13525–13530

    PubMed  CAS  Google Scholar 

  • Mitchell JE, Campbell AP, New NE, Sadofsky LR, Kastelik JA, Mulrennan SA, Compton SJ, Morice AH (2005) Expression and Characterization of the intracellular vanilloid receptor (TRPV1) in bronchi from patients with chronic cough. Exp Lung Res 31:295–306

    PubMed  CAS  Google Scholar 

  • Mohammed SP, Higenbottam TW, Adcock JJ (1993) Effects of aerosol-applied capsaicin, hista-mine and prostaglandin E2 on airway sensory receptors of anaesthetized cats. J Physiol (Lond) 469:51–66

    CAS  Google Scholar 

  • Morris JB, Stanek J, Gianutsos G (1999) Sensory nerve-mediated immediate nasal responses to inspired acrolein. J Appl Physiol 87:1877–1886

    PubMed  CAS  Google Scholar 

  • Mutoh T, Bonham AC, Joad JP (2000) Substance P in the nucleus of the solitary tract augments bronchopulmonary C fiber reflex output. Am J Physiol Regul Integr Comp Physiol 279: R1215–R1223

    PubMed  CAS  Google Scholar 

  • Myers AC, Kajekar R, Undem BJ (2002) Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol Physiol 282:L775–L781

    PubMed  CAS  Google Scholar 

  • Nagata K, Duggan A, Kumar G, Garcia-Anoveros J (2005) Nociceptor and Hair Cell Transducer Properties of TRPA1, a Channel for Pain and Hearing. J Neurosci 25:4052–4061

    PubMed  CAS  Google Scholar 

  • Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. PNAS 101:12706–12711

    PubMed  CAS  Google Scholar 

  • Ni D, Gu Q, Hu HZ, Gao N, Zhu MX, Lee LY (2006) Thermal sensitivity of isolated vagal pulmonary sensory neurons: Role of transient receptor potential vanilloid receptors. Am J Physiol Regul Integr Comp Physiol 291:R541–R550

    PubMed  CAS  Google Scholar 

  • Nilius B, Voets T (2005) TRP channels: A TR(I)P through a world of multifunctional cation channels. Pflugers Archiv Eur J Physiol 451:1–10

    CAS  Google Scholar 

  • O'Connell F, Springall DR, Moradoghli-Haftvani A, Krausz T, Price D, Fuller RW, Polak JM, Pride NB (1995) Abnormal intraepithelial airway nerves in persistent unexplained cough? Am J Respir Crit Care Med 152:2068–2075

    PubMed  Google Scholar 

  • Oh EJ, Weinreich D (2004) Bradykinin decreases K+ and increases Cl– conductances in vagal afferent neurones of the guinea pig. J Physiol (Lond) 558:513–526

    CAS  Google Scholar 

  • Pape HC (1996) Queer current and pacemaker: The hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    PubMed  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    PubMed  CAS  Google Scholar 

  • Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, Liberator P, Iyer LM, Kash SF, Kohler MG, Kaczorowski GJ, MacIntyre DE, Martin WJ (2005) Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. PNAS 102:9382–9387

    PubMed  CAS  Google Scholar 

  • Rahman I, van Schadewijk AAM, Crowther AJL, Hiemstra PS, Stolk J, MacNee W, De Boer WI (2002) 4-Hydroxy-2-Nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166:490–495

    PubMed  Google Scholar 

  • Ramer MS, Bradbury EJ, McMahon SB (2001) Nerve growth factor induces P2X(3) expression in sensory neurons. J Neurochem 77(3):864–875

    PubMed  CAS  Google Scholar 

  • Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    PubMed  CAS  Google Scholar 

  • Raymond CK, Castle J, Garrett-Engele P, Armour CD, Kan Z, Tsinoremas N, Johnson JM (2004) Expression of alternatively spliced sodium channel {alpha}-subunit genes: Unique splicing patterns are observed in dorsal root ganglia. J Biol Chem 279:46234–46241

    PubMed  CAS  Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640

    PubMed  CAS  Google Scholar 

  • Riccio MM, Kummer W, Biglari B, Myers AM, Undem BJ (1996a) Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol (Lond) 496:521–530

    CAS  Google Scholar 

  • Riccio MM, Myers AM, Undem BJ (1996b) Immunomodulation of afferent neurons in guinea-pig isolated airway. J Physiol (Lond) 491(Part 2):499–509

    Google Scholar 

  • Roberts AM, Kaufman MP, Baker DG, Brown JK, Coleridge HM, Coleridge JC (1981) Reflex tracheal contraction induced by stimulation of bronchial C-fibers in dogs. J Appl Physiol 51: 485–493

    PubMed  CAS  Google Scholar 

  • Rush AM, Waxman SG (2004) PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res 1023:264–271

    PubMed  CAS  Google Scholar 

  • Sangameswaran L, Fish LM, Koch BD, Rabert DK, Delgado SG, Ilnicka M, Jakeman LB, Novakovic S, Wong K, Sze P, Tzoumaka E, Stewart GR, Herman RC, Chan H, Eglen RM, Hunter JC (1997) A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia. J Biol Chem 272:14805–14809

    PubMed  CAS  Google Scholar 

  • Sanico AM, Stanisz AM, Gleeson TD, Bora S, Proud D, Bienenstock J, Koliatsos VE, Togias A (2000) Nerve growth factor expression and release in allergic inflammatory disease of the upper airways. Am J Respir Crit Care Med 161:1631–1635

    PubMed  CAS  Google Scholar 

  • Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-Lipoxygenase. J Neurosci 27:2331–2337

    PubMed  CAS  Google Scholar 

  • Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR (2003) A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci 6:724–730

    PubMed  CAS  Google Scholar 

  • Sim VM, Pattle RE (1957) Effect of possible smog irritants on human subjects. J Am Med Assoc 165:1908–1913

    PubMed  CAS  Google Scholar 

  • Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190

    PubMed  CAS  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    PubMed  CAS  Google Scholar 

  • Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 20:7531–7538

    PubMed  CAS  Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668

    PubMed  CAS  Google Scholar 

  • Symanowicz PT, Gianutsos G, Morris JB (2004) Lack of role for the vanilloid receptor in response to several inspired irritant air pollutants in the C57Bl/6J mouse. Neurosci Lett 362:150–153

    PubMed  CAS  Google Scholar 

  • Tatar M, Webber SE, Widdicombe JG (1988) Lung C-fibre receptor activation and defensive reflexes in anaesthetized cats. J Physiol (Lond) 402:411–420

    CAS  Google Scholar 

  • Tatar M, Sant'Ambrogio G, Sant'Ambrogio FB (1994) Laryngeal and tracheobronchial cough in anesthetized dogs. J Appl Physiol 76:2672–2679

    PubMed  CAS  Google Scholar 

  • Taylor-Clark T, Undem BJ, Ghatta S, McAlexander MA (2007a) 4-Hydroxynonenal: A potential endogenous activator of transient receptor potential A1 (TRPA1) channels. Am J Respir Crit Care Med 175:667

    Google Scholar 

  • Taylor-Clark TE, Undem BJ, MacGlashan J, Ghatta S, Carr MJ, McAlexander MA (2007b) Prostaglandin-induced activation of nociceptive neurons via direct interaction with TRPA1. Mol Pharmacol Nov 13; [Epub ahead of print]

    Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    PubMed  CAS  Google Scholar 

  • Trevisani M, Milan A, Gatti R, Zanasi A, Harrison S, Fontana G, Morice AH, Geppetti P (2004) Antitussive activity of iodo-resiniferatoxin in guinea pigs. Thorax 59:769–772

    PubMed  CAS  Google Scholar 

  • Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007)4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. PNAS 104:13519–13524

    PubMed  CAS  Google Scholar 

  • Undem BJ, Weinreich D (1993) Electrophysiological properties and chemosensitivity of guinea pig nodose ganglion neurons in vitro. J Auton Nerv Syst 44:17–33

    PubMed  CAS  Google Scholar 

  • Undem BJ, Oh EJ, Lancaster E, Weinreich D (2003) Effect of extracellular calcium on excitability of guinea pig airway vagal afferent nerves. J Neurophysiol 89:1196–1204

    PubMed  CAS  Google Scholar 

  • Vellani V, Zachrisson O, McNaughton PA (2004) Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J Physiol 560:391–401

    PubMed  CAS  Google Scholar 

  • Villarreal CF, Sachs D, Queiroz Cunha F, Parada CA, Ferreira SH (2005) The role of NaV1.8 sodium channel in the maintenance of chronic inflammatory hypernociception. Neurosci Lett 386:72–77

    PubMed  CAS  Google Scholar 

  • Virchow J, Julius P, Lommatzsch M, Luttman W, Renz H, Braun A (1998) Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am J Respir Crit Care Med 158:2002–2005

    PubMed  CAS  Google Scholar 

  • Waxman SG (2007a) Channel, neuronal and clinical function in sodium channelopathies: From genotype to phenotype. Nat Neurosci 10:405–409

    CAS  Google Scholar 

  • Waxman SG (2007b) Nav1.7, its mutations, and the syndromes that they cause. Neurology 69:505–507

    Google Scholar 

  • Wu X, Myers AC, Goldstone AC, Togias A, Sanico AM (2006) Localization of nerve growth factor and its receptors in the human nasal mucosa. J Allergy Clin Immunol 118:428–433

    PubMed  CAS  Google Scholar 

  • Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I,Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186

    PubMed  CAS  Google Scholar 

  • Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, Fan J, Bu D, Liu B, Fan Z, Wu G, Jin J, Ding B, Zhu X,Shen Y (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41:171–174

    PubMed  CAS  Google Scholar 

  • Yoshimura N, de Groat WC (1999) Increased excitability of afferent neurons innervating rat urinary bladder after chronic bladder inflammation. J Neurosci 19:4644–4653

    PubMed  CAS  Google Scholar 

  • Yoshimura N, Bennett NE, Hayashi Y, Ogawa T, Nishizawa O, Chancellor MB, de Groat WC,Seki S (2006) Bladder overactivity and hyperexcitability of bladder afferent neurons after intrathecal delivery of nerve growth factor in rats. J Neurosci 26:10847–10855

    PubMed  CAS  Google Scholar 

  • Zhang X, Huang J, McNaughton PA (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 24:4211–4223

    PubMed  CAS  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang Hh, Sorgard M, Di Marzo V, Julius D,Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McAlexander, M.A., Carr, M.J. (2009). Peripheral Mechanisms I: Plasticity of Peripheral Pathways. In: Chung, K.F., Widdicombe, J. (eds) Pharmacology and Therapeutics of Cough. Handbook of Experimental Pharmacology, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79842-2_7

Download citation

Publish with us

Policies and ethics