Skip to main content

Towards Robust Nonlinear Multivariate Analysis by Neural Network Methods

  • Chapter
Nonlinear Time Series Analysis in the Geosciences

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 112))

Abstract

While neural network models have provided nonlinear generalizations of classical linear multivariate models (e.g. regression, principal component and canonical correlation analyses), their applications to the analysis and prediction of real environmental and climate data are not always successful as many of the datasets are very noisy and/or contain relatively few independent observations. We review recent efforts directed towards making the nonlinear models more robust – the development of (1) an information criterion to alleviate overfitting in nonlinear principal component analysis, and (2) a robust version of nonlinear canonical correlation analysis. We also discuss two common causes undermining nonlinear models relative to linear models: (1) Time-averaging of data (e.g. from daily data to seasonal data) linearizes the relation between predictor and predictand due to the central limit theorem. (2) When new predictor data lies outside the training range, the nonlinear model may extrapolate poorly, thereby decreasing its forecast skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    Google Scholar 

  2. Hsieh, W.: Nonlinear multivariate and time series analysis by neural network methods. Reviews of Geophysics 42 (2004) RG1003, doi:10.1029/2002RG000112

    Article  Google Scholar 

  3. Kramer, M.: Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37 (1991) 233–243

    Article  Google Scholar 

  4. Hsieh, W.: Nonlinear principal component analysis by neural networks. Tellus 53A (2001) 599–615

    Google Scholar 

  5. Schölkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 (1998) 1299–1319

    Google Scholar 

  6. Hastie, T., Stuetzle, W.: Principal curves. Journal of the American Statistical Association 84 (1989) 502–516

    Article  Google Scholar 

  7. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding}. Science 290 (2000) 2323–2326

    Google Scholar 

  8. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319–2323

    Article  Google Scholar 

  9. Kohonen, T.: Self-organzing formation of topologically correct feature maps. Biological Cybernetics 43 (1982) 59–69

    Article  Google Scholar 

  10. Kwok, J.T.Y., Tsang, I.W.H.: The pre-image problem in kernel methods. IEEE Transactions on Neural Networks 15 (2004) 1517–1525

    Article  Google Scholar 

  11. Lai, P., Fyfe, C.: A neural implementation of canonical correlation analysis. Neural Networks 12 (1999) 1391–1397

    Article  Google Scholar 

  12. Hsieh, W.: Nonlinear canonical correlation analysis by neural networks. Neural Networks 13 (2000) 1095–1105

    Article  Google Scholar 

  13. Lai, P., Fyfe, F.: Kernel and non-linear canonical correlation analysis. International Journal of Neural Systems 10 (2000) 365–377

    Google Scholar 

  14. Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector machines. World Scientific, New Jersey (2002)

    Google Scholar 

  15. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  16. MacKay, D.: Bayesian interpolation. Neural Computation 4 (1992) 415–447

    Article  Google Scholar 

  17. Foresee, F., Hagan, M.: Gauss-Newton approximation to Bayesian regularization. In: Proceedings of the 1997 International Joint Conference on Neural Networks 3 (1997) 1930–1936

    Google Scholar 

  18. Hsieh, W.: Nonlinear principal component analysis of noisy data. Neural Networks 20 (2007) 434–443

    Article  Google Scholar 

  19. Christiansen, B.: The shortcomings of nonlinear principal component analysis in identifying circulation regimes. Journal of Climate 18(22) (2005) 4814–4823.

    Article  Google Scholar 

  20. Christiansen, B.: Reply to Monahan and Fyfe’s comment on “The shortcomings of nonlinear principal component analysis in identifying circulation regimes". Journal of Climate 20 (2007) 378–379

    Article  Google Scholar 

  21. Malthouse, E.: Limitations of nonlinear PCA as performed with generic neural networks. IEEE Transactions on Neural Networks 9 (1998) 165–173

    Article  Google Scholar 

  22. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control AC-19 (1974) 716–723

    Article  Google Scholar 

  23. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6 (1978) 461–464

    Article  Google Scholar 

  24. Monahan, A.: Nonlinear principal component analysis: Tropical Indo-Pacific sea surface temperature and sea level pressure. Journal of Climate 14 (2001) 219–233

    Article  Google Scholar 

  25. Kirby, M., Miranda, R.: Circular nodes in neural networks. Neural Computation 8 (1996) 390–402

    Article  Google Scholar 

  26. Hsieh, W., Wu, A.: Nonlinear multichannel singular spectrum analysis of the tropical Pacific climate variability using a neural network approach. Journal of Geophysical Research 107 (2002) DOI:10.1029/2001JC000957

    Google Scholar 

  27. Hsieh, W.: Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approach. Journal of Climate 14 (2001) 2528–2539

    Article  Google Scholar 

  28. Wu, A., Hsieh, W.: Nonlinear canonical correlation analysis of the tropical Pacific wind stress and sea surface temperature. Climate Dynamics 19 (2002) 713–722. DOI:10.1007/s00382–002–0262–8

    Article  Google Scholar 

  29. Wu, A., Hsieh, W., Zwiers, F.: Nonlinear modes of North American winter climate variability detected from a general circulation model. Journal of Climate 16 (2003) 2325–2339

    Article  Google Scholar 

  30. Wilcox, R.: Robust Estimation and Hypothesis Testing. Elsevier, Amsterdam (2004)

    Google Scholar 

  31. Cannon, A., Hsieh, W.: Robust nonlinear canonical correlation analysis: Application to seasonal climate forecasting. Nonlinear Processes in Geophysics 12 (2008) 221–232

    Google Scholar 

  32. Kalnay, E., et al.: The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77 (1996) 437–471

    Article  Google Scholar 

  33. Yuval, Hsieh, W.: The impact of time-averaging on the detectability of nonlinear empirical relations. Quarterly Journal of the Royal Meterological Society 128 (2002) 1609–1622

    Google Scholar 

  34. Bickel, P., Doksum, K.: Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day, Oakland (1977)

    Google Scholar 

  35. Wu, A., Hsieh, W., Cannon, A., Shabbar, A.: Improving neural network predictions of North American seasonal climate by outlier correction. (Nonlinear Processes in Geophysics (submitted))

    Google Scholar 

  36. von Storch, H., Zwiers, F.: Statistical Analysis in Climate Research. Cambridge University Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hsieh, W.W., Cannon, A.J. (2008). Towards Robust Nonlinear Multivariate Analysis by Neural Network Methods. In: Donner, R.V., Barbosa, S.M. (eds) Nonlinear Time Series Analysis in the Geosciences. Lecture Notes in Earth Sciences, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78938-3_6

Download citation

Publish with us

Policies and ethics