Skip to main content

Detecting Oscillations Hidden in Noise: Common Cycles in Atmospheric, Geomagnetic and Solar Data

  • Chapter
Nonlinear Time Series Analysis in the Geosciences

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 112))

Abstract

In this chapter we present a nonlinear enhancement of a linear method, the singular system analysis (SSA), which can identify potentially predictable or relatively regular processes, such as cycles and oscillations, in a background of colored noise. The first step in the distinction of a signal from noise is a linear transformation of the data provided by the SSA. In the second step, the dynamics of the SSA modes is quantified in a general, non-linear way, so that dynamical modes are identified which are more regular, or better predictable than linearly filtered noise. A number of oscillatory modes are identified in data reflecting solar and geomagnetic activity and climate variability, some of them sharing common periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. Elsner, A.A. Tsonis, Singular Spectrum Analysis. A New Tool in Time Series Analysis. Springer, Berlin (1996)

    Google Scholar 

  2. N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure. SSA and Related Techniques, Chapman & Hall/CRC, Boca Raton (2001)

    Google Scholar 

  3. M.R. Ghil, M. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann, A.W. Robertson, A. Saunders, Y. Tian, F. Varadi, P. Yiou, Advanced spectral methods for climatic time series. Rev. Geophys., 40, 3-11–3-13 (2002)

    Article  Google Scholar 

  4. M.R. Allen, A.W. Robertson, Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12, 775–784 (1996)

    Article  Google Scholar 

  5. R. Vautard, M. Ghil, Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica D, 35, 395–424 (1989)

    Article  Google Scholar 

  6. M. Ghil, R. Vautard, Interdecadal oscillations and the warming trend in global temperature time series. Nature, 350(6316), 324–327 (1991)

    Article  Google Scholar 

  7. C.L. Keppenne, M. Ghil, Adaptive filtering and the Southern Oscillation Index. J. Geophys. Res., 97, 20449–20454 (1992)

    Google Scholar 

  8. P. Yiou, M. Ghil, J. Jouyel, D. Paillard, R. Vautard, Nonlinear variability of the climatic system, from singular and power spectra of Late Quarternary records. Clim. Dyn., 9, 371–389 (1994)

    Article  Google Scholar 

  9. M.R. Allen, L.A. Smith, Investigatings the origins and significance of low-frequency modes of climate variability. Geophys. Res. Lett., 21, 883–886 (1994)

    Article  Google Scholar 

  10. R. Vautard, P. Yiou, M. Ghil, Singular spectrum analysis: a toolkit for short noisy chaotic signals. Physica D, 58, 95–126 (1992)

    Article  Google Scholar 

  11. M.R. Allen, L.A. Smith, Monte Carlo SSA: Detecting irregular oscillation in the presence of colored noise. J. Climate, 9(12), 3373–3404 (1996)

    Article  Google Scholar 

  12. W. W. Hsieh, Nonlinear multivariate and time series analysis by neural network methods. Rev. Geophys., 42, RG1003 (2004)

    Google Scholar 

  13. S. S. P. Rattan, W.W. Hsieh, Nonlinear complex principal component analysis of the tropical Pacific interannual wind variability. Geophys. Res. Lett., 31(21), L21201 (2004)

    Article  Google Scholar 

  14. W. W. Hsieh, Nonlinear principal component analysis of noisy data. Neural Networks, 20, 434–443 (2007)

    Article  Google Scholar 

  15. W. W. Hsieh, A. J. Cannon, Towards robust nonlinear multivariate analysis by neural network methods. This volume.

    Google Scholar 

  16. M. Paluš, I. Dvořák, Singular-value decomposition in attractor reconstruction: pitfalls and precautions. Physica D 55, 221–234 (1992).

    Article  Google Scholar 

  17. D.S. Broomhead, G.P. King, Extracting qualitative dynamics from experimental data. Physica D, 20, 217–236 (1986)

    Article  Google Scholar 

  18. J.B. Gao, Y. Cao, J.-M. Lee, Principal component analysis of 1/fα noise. Phys. Lett. A, 314, 392–400 (2003)

    Article  Google Scholar 

  19. L.A. Smith, Identification and prediction of low-dimensional dynamics. Physica D, 58, 50–76 (1992)

    Article  Google Scholar 

  20. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94 (1992)

    Article  Google Scholar 

  21. M. Paluš, Testing for nonlinearity using redundancies: Quantitative and qualitative aspects. Physica D, 80, 186–205 (1995)

    Article  Google Scholar 

  22. M. Paluš, D. Novotná, Detecting modes with nontrivial dynamics embedded in colored noise: Enhanced Monte Carlo SSA and the case of climate oscillations. Phys. Lett. A, 248, 191–202 (1998)

    Article  Google Scholar 

  23. T.M. Cover, J.A. Thomas, Elements of Information Theory. J. Wiley & Sons, New York (1991)

    Google Scholar 

  24. Ya.G. Sinai, Introduction to Ergodic Theory. Princeton University Press, Princeton (1976)

    Google Scholar 

  25. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory. Springer, New York (1982)

    Google Scholar 

  26. K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge (1983)

    Google Scholar 

  27. Ya.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys, 32, 55–114 (1977)

    Google Scholar 

  28. M. Paluš, Coarse-grained entropy rates for characterization of complex time series. Physica D, 93, 64–77 (1996)

    Article  Google Scholar 

  29. M. Paluš, Kolmogorov entropy from time series using information-theoretic functionals. Neural Network World, 7(3), 269–292 (1997) (http://www.cs.cas.cz/ mp/papers/rd1a.pdf)

    Google Scholar 

  30. K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, J. Bhattacharya, Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep., 441, 1–46 (2007).

    Article  Google Scholar 

  31. M. Paluš, D. Novotná, Enhanced Monte Carlo Singular System Analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlin. Proc. Geophys., 11, 721–729 (2004)

    Article  Google Scholar 

  32. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing. Cambridge Univ. Press, Cambridge (1986)

    Google Scholar 

  33. A. Arneodo, E. Bacry, J.F. Muzy, Random cascades on wavelet dyadic trees. J. Math. Phys., 39(8), 4142–4164 (1998)

    Article  Google Scholar 

  34. J.W. Hurrell, Y. Kushnir, M. Visbeck, Climate - The North Atlantic oscillation. Science, 291(5504), 603 (2001)

    Article  Google Scholar 

  35. D. Rind, The Sun’s Role in Climate Variations. Science, 296, 673–677 (2002)

    Article  Google Scholar 

  36. E. Bard, M. Frank, Climate change and Solar variability: What’s new under the sun? Earth Planet. Sci. Lett., 248(1–2), 1–14 (2006)

    Google Scholar 

  37. R.P. Kane, Sun-Earth relation: Historical development and present status- A brief review. Advances in Space Research, 35(5), 866–881 (2005)

    Article  Google Scholar 

  38. P.N. Mayaud, The aa indices: a 100year series characterizing the magnetic activity. J. Geophys. Res., 77(34), 6870–6874 (1972)

    Article  Google Scholar 

  39. M. Paluš, D. Novotná, Quasi-Biennial Oscillations extracted from the monthly NAO index and temperature records are phase-synchronized. Nonlin. Proc. Geophys. 13, 287–296 (2006)

    Google Scholar 

  40. C. Torrence, G.P. Compo, A practical guide to wavelet analysis. Bull. Amer. Meteorological Society, 79(1), 61–78 (1998)

    Article  Google Scholar 

  41. M. Paluš, D. Novotná, Sunspot cycle: a driven nonlinear oscillator? Phys. Rev. Lett., 83, 3406–3409 (1999)

    Article  Google Scholar 

  42. M. Paluš, J. Kurths, U. Schwarz, N. Seehafer, D. Novotná, I. Charvátová, The solar activity cycle is weakly synchronized with the solar inertial motion. Phys. Lett. A, 365, 412–428 (2007)

    Article  Google Scholar 

  43. M. Paluš, D. Novotná, P. Tichavský, Shifts of seasons at the European mid-latitudes: Natural fluctuations correlated with the North Atlantic Oscillation. Geophys. Res. Lett., 32, L12805 (2005)

    Article  Google Scholar 

  44. R. B. Govindan, D. Vjushin, S. Brenner, A. Bunde, S. Havlin, H.-J. Schellnhuber, Long-range correlations and trends in global climate models: Comparison with real data. Physica A, 294(1–2), 239–248 (2001)

    Article  Google Scholar 

  45. R. B. Govindan, A. Bunde, S. Havlin, Volatility in atmospheric temperature variability. Physica A, 318(3–4) 529–536 (2003)

    Article  Google Scholar 

  46. S. Jevrejeva, J. C. Moore, Singular Spectrum Analysis of Baltic Sea ice conditions and large-scale atmospheric patterns since 1708. Geophys. Res. Lett, 28(23), 4503–4506 (2001)

    Article  Google Scholar 

  47. S.R. Gámiz-Fortis, D. Pozo-Vázques, M.J. Esteban-Parra, Y. Castro-Díez, Spectral characteristics and predictability of the NAO assessed through Singular Spectral Analysis, J. Geophys. Res., 107(D23), 4685 (2002)

    Article  Google Scholar 

  48. V. Moron, R. Vautard, M. Ghil, Trends, interdecadal and interannual oscillations in global sea surface temperatures. Clim. Dyn., 14, 545 – 569 (1998)

    Article  Google Scholar 

  49. E. D. da Costa, A. C. de Verdiere, The 7.7 year North Atlantic Oscillation. Q. J. R. Meteorol. Soc., 128, 797 – 817 (2002)

    Article  Google Scholar 

  50. Y. S. Unal, M. Ghil, Interannual and interdecadal oscillation patterns in sea level. Climate Dynamics 11, 255–278 (1995)

    Article  Google Scholar 

  51. S. Jevrejeva, A. Grinsted, J. C. Moore, S. Holgate, Nonlinear trends and multiyear cycles in sea level records. J. Geophys. Res. 111, C09012 (2006)

    Article  Google Scholar 

  52. Y. Feliks, M. Ghil, Interannual, synchronized oscillations over the Norh Atlantic, Eastern Mediterranean and Ethiopian Plateau. Geophysical Research Abstracts, 9, 05600 (2007)

    Google Scholar 

  53. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  54. M. Paluš, Detecting phase synchronization in noisy systems. Phys. Lett. A, 235, 341–351 (1997)

    Article  Google Scholar 

  55. D. Maraun, J. Kurths, Epochs of phase coherence between El Niño/Southern Oscillation and Indian monsoon. Geophys. Res. Lett., 32(15), L15709 (2005)

    Article  Google Scholar 

  56. M.G. Rosenblum, A.S. Pikovsky, Detecting direction of coupling in interacting oscillators. Phys. Rev. E, 64, 045202(R) (2001)

    Article  Google Scholar 

  57. M. Paluš, A. Stefanovska, Direction of coupling from phases of interacting oscillators: An information-theoretic approach. Phys. Rev. E, 67, 055201(R) (2003)

    Google Scholar 

  58. I.I. Mokhov, D.A. Smirnov, El Niño-Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices. Geophys. Res. Lett., 33, L03708 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paluš, M., Novotná, D. (2008). Detecting Oscillations Hidden in Noise: Common Cycles in Atmospheric, Geomagnetic and Solar Data. In: Donner, R.V., Barbosa, S.M. (eds) Nonlinear Time Series Analysis in the Geosciences. Lecture Notes in Earth Sciences, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78938-3_15

Download citation

Publish with us

Policies and ethics