Skip to main content

Automatic Parameter Learning for Multiple Network Alignment

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

We developed Græmlin 2.0, a new multiple network aligner with (1) a novel scoring function that can use arbitrary features of a multiple network alignment, such as protein deletions, protein duplications, protein mutations, and interaction losses; (2) a parameter learning algorithm that uses a training set of known network alignments to learn parameters for our scoring function and thereby adapt it to any set of networks; and (3) an algorithm that uses our scoring function to find approximate multiple network alignments in linear time.

We tested Græmlin 2.0’s accuracy on protein interaction networks from IntAct, DIP, and the Stanford Network Database. We show that, on each of these datasets, Græmlin 2.0 has higher sensitivity and specificity than existing network aligners. Græmlin 2.0 is available under the GNU public license at http://graemlin.stanford.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24, 427–433 (2006)

    Article  Google Scholar 

  2. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, 47–52 (1999)

    Article  Google Scholar 

  3. Pereira-Leal, J.B., Levy, E.D., Teichmann, S.A.: The origins and evolution of functional modules: lessons from protein complexes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361, 507–517 (2006)

    Article  Google Scholar 

  4. Uetz, P., Finley Jr., R.L.: From protein networks to biological systems. FEBS Lett. 579, 1821–1827 (2005)

    Article  Google Scholar 

  5. Cusick, M.E., Klitgord, N., Vidal, M., Hill, D.E.: Interactome: gateway into systems biology. Hum. Mol. Genet. 14(2), 171–181 (2005)

    Article  Google Scholar 

  6. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA 100, 11394–11399 (2003)

    Article  Google Scholar 

  7. Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J Comput. Biol. 12, 835–846 (2005)

    Article  Google Scholar 

  8. Koyuturk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. J Comput. Biol. 13, 182–199 (2006)

    Article  MathSciNet  Google Scholar 

  9. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21, 3401–3408 (2005)

    Article  Google Scholar 

  10. Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: QNet: A Tool for Querying Protein Interaction Networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 1–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 16–31. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Zhenping, L., Zhang, S., Wang, Y., Zhang, X.-S., Chen, L.: Alignment of molecular networks by integer quadratic programming. Bioinformatics 23, 1631–1639 (2007)

    Article  Google Scholar 

  13. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102, 1974–1979 (2005)

    Article  Google Scholar 

  14. Flannick, J., Novak, A., Srinivasan, B.S., Batzoglou, S., McAdams, H.H.: Graemlin: General and Robust Alignment of Multiple Large Interaction Networks. Genome Res. 16 (2006)

    Google Scholar 

  15. Berg, J., Lassig, M.: Cross-species analysis of biological networks by Bayesian alignment. Proc. Natl. Acad Sci. USA 103, 10967–10972 (2006)

    Article  Google Scholar 

  16. Hirsh, E., Sharan, R.: Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics 23, 170–176 (2007)

    Article  Google Scholar 

  17. Remm, M., Storm, C.E., Sonnhammer, E.L.: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol. Biol. 314, 1041–1052 (2001)

    Article  Google Scholar 

  18. Do, C.B., Gross, S.S., Batzoglou, S.: Contralign: Discriminative training for protein sequence alignment. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 160–174. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22, 90–98 (2006)

    Article  Google Scholar 

  20. Felsenstein, J.: Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25, 471–492 (1973)

    Google Scholar 

  21. Ratliff, N., Bagnell, J., Zinkevich, M. (online) subgradient methods for structured prediction. In: Eleventh International Conference on Artificial Intelligence and Statistics (AIStats) (2007)

    Google Scholar 

  22. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic. Acids. Res. 28, 27–30 (2000)

    Article  Google Scholar 

  23. Shor, N.Z., Kiwiel, K.C., Ruszcayǹski, A.: Minimization methods for non-differentiable functions. Springer, New York (1985)

    MATH  Google Scholar 

  24. Nedic, A., Bertsekas, D.: Convergence rate of incremental subgradient algorithms (2000)

    Google Scholar 

  25. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  26. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  27. Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., Dimmer, E., Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake, J., Leroy, C., Liban, A., Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J., Robbe, K., Roechert, B., Thorneycroft, D., Zhang, Y., Apweiler, R., Hermjakob, H.: IntAct–open source resource for molecular interaction data. Nucleic Acids Res. 35, 561–565 (2007)

    Article  Google Scholar 

  28. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.-M., Eisenberg, D.: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002)

    Article  Google Scholar 

  29. Srinivasan, B.S., Novak, A.F., Flannick, J.A., Batzoglou, S., McAdams, H.H.: Integrated protein interaction networks for 11 microbes. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 1–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)

    Article  Google Scholar 

  31. Srinivasan, B.S., Shah, N.H., Flannick, J.A., Abeliuk, E., Novak, A.F., Batzoglou, S.: Current progress in network research: toward reference networks for key model organisms. Brief Bioinform (2007)

    Google Scholar 

  32. Altschul, S.F., Carroll, R.J., Lipman, D.J.: Weights for data related by a tree. J Mol. Biol. 207, 647–653 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flannick, J., Novak, A., Do, C.B., Srinivasan, B.S., Batzoglou, S. (2008). Automatic Parameter Learning for Multiple Network Alignment. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics