Skip to main content

Macroecology of Microbes – Biogeography of the Glomeromycota

  • Chapter
Mycorrhiza

Arbuscular mycorrhizal (AM) fungi are among the most abundant soil microorganisms, associating with 95% of plant families and occurring on all continents of the globe (Smith and Read 1997; Trappe 1987; Read 1991). All AM fungi are members of the newly created phylum Glomeromycota (Schüßler 2001). They inhabit most latitudes and terrestrial ecosystems worldwide, including both natural and human impacted systems. Despite their prevalence in the environment and importance to plant productivity, much remains unknown about patterns of diversity and the biogeography of Glomeromycotan fungi. Biogeography is defined as the study of the geographic distributions of organisms and the mechanisms that drive these distributions. Traditionally, AM fungal diversity was thought to be locally high and globally low; up to 20 species can associate with an individual plant, but less than 250 species have been described worldwide (Morton et al. 1995; Bever et al. 2001). Furthermore, international germ collections have been established in North America and Europe where researchers from around the world can send soil samples to be cultured and archived. According to these collections, many communities from around the globe appear similar, with the same morphospecies such as Glomus intraradices seeming to occur globally (Morton and Bentivenga 1994). Over the years, the number of morphospecies in international germ collections has remained low while the number of accessions has increased, indicating low global biodiversity for AM fungi. Furthermore, many taxonomic species such as Glomus intraradices and Glomus mosseae have been observed in a variety of geographic locations in drastically different environmental conditions. Together, these observations have contributed to the notion that AM fungal species have global distributions. However, critics claim that much of the biogeographical inferences currently made about AM fungi are based on information gained from biased sampling and variable methods (Fitter 2005; Johnson and Wedin 1997). Indeed, as the number of scientists working with AM fungi increases and novel regions and ecosystems are sampled, new AM fungal taxa as well as novel morphological traits have been discovered (Bever et al. 2001; Kramadibrata et al. 2000). In addition, methods used to determine AM fungal diversity and species composition are shifting from morphological to DNA-based. New techniques, new species concepts, and collaborative research efforts have invigorated studies of AM fungal biogeography. Joining conceptual frameworks and quantitative models with empirical studies will greatly advance our knowledge of Glomeromycotan biogeography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD (1985) The effect of soil pH on the formation of vesicular arbuscular mycorrhizas by two species of Glomus. Aust J Soil Res 23:253-261

    Google Scholar 

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycor-rhizas. Agric Ecosyst Environ 35:121-150

    Google Scholar 

  • Abbott LK, Robson AD, Hall IR (1983) Introduction of vesicular arbuscular mycorrhizal fungi into agricultural soils. Aust J Agric Res 34:741-749

    Google Scholar 

  • Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci USA 103:9130-9135

    CAS  PubMed  Google Scholar 

  • Allen EB, Chambers JC, Connor KF, Allen MF, Brown RW (1987) Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arct Alp Res 19:11-20

    Google Scholar 

  • Allen EB, Allen MF, Helm D, Trappe J, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. In: Collins H, Robertson G, Klung M (eds) The signifi-cance and regulation of soil biodiversity. Kluwer, Dordrecht, pp 47-62

    Google Scholar 

  • Allen EB, Rincon E, Allen MF, Perez-Jimenez A, Huante P (1998) Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30:261-274

    Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, New York

    Google Scholar 

  • Andersson L (1990) The driving force: species concepts and ecology. Taxon 39:375-382

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Baas Becking LGM (1930) Salt effects on swarmers of Dunaliella viridis. Teod J Gen Physiol 14:765-763

    Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Van Stockkum & Zoon, The Hague

    Google Scholar 

  • Bala A, Murphy P, Giller KE (2003) Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol Ecol 12:917-930

    CAS  PubMed  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217-230

    Google Scholar 

  • Belnap J, Phillips SL (2001) Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol Appl 11:1261-1275

    Google Scholar 

  • Bentivenga SP, Hetrick BAD (1991) Relationship between mycorrhizal activity, burning, and plant productivity in a tallgrass prairie. Can J Bot 69:2597-2602

    Google Scholar 

  • Bentivenga SP, Bever JD, Morton JB (1997) Genetic variation of morphological characters within a single isolate of the endomycorrhizal fungus Glomus clarum (Glomaceae). Am J Bot 84:1211-1216

    Google Scholar 

  • Bever JD, Morton JB (1999) Heritable variation and mechanisms of inheritance of spore shape within a population of Scutellospora pellucida, an arbuscular mycorrhizal fungus. Am J Bot 86:1209-1216

    PubMed  Google Scholar 

  • Bever JD, Wang M (2005) Arbuscular mycorrhizal fungi: Hyphal fusion and multigenomic structure. Nature 433:E3-E4

    CAS  PubMed  Google Scholar 

  • Bever J, Westover K, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:1-13

    Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923-931

    Google Scholar 

  • Brown A, Bledsoe C (1996) Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh holophyte. J Ecol 84:703-715

    Google Scholar 

  • Brown, JH (1995) Macroecology. The University of Chicago Press, Chicago, Ill.

    Google Scholar 

  • Brown JH, Gibson AC (1983) Biogeography. Mosby, St. Louis, Mo.

    Google Scholar 

  • Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76:2028-2043

    Google Scholar 

  • Bunn RA, Zabinski CA (2003) Arbuscular mycorrhizae in thermal-influenced soils in Yellowstone National Park. West North Am Nat 63:409-415

    Google Scholar 

  • Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modelling procedure for map- ping potential distributions of plants and animals. Biodivers Cons 2:667-680

    Google Scholar 

  • Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733-1740

    CAS  Google Scholar 

  • Chaudhary VB (2006). Functions of arbuscular mycorrhizal fungi at community and ecosystem scales in semi-arid environments. M.S. Thesis, Northern Arizona University

    Google Scholar 

  • Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448-5456

    CAS  PubMed  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259-265

    Google Scholar 

  • Clapp JP, Helgason T, Daniell TJ, Young JPW (2002) Genetic studies of the structure and diversity of arbuscular mycorrhizal fungal communities. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 201-224

    Google Scholar 

  • Connell JH, Slayter RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119-1144

    Google Scholar 

  • Connor EF, Simberloff D (1979). The assembly of species communities: chance or competition? Ecology 60:1132-1140

    Google Scholar 

  • Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81-87

    PubMed  Google Scholar 

  • Daily GC, Matson PA, Vitousek PM (1997) Ecosystem services supplied by soil. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems, Island Press, Washington, D.C., pp 113-132

    Google Scholar 

  • de Candolle AP (1820) Essai elementaire de geographie botanique. Levrault, Paris

    Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular myc- orrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mecha- nisms between different phylogenic groups. New Phytol 165:261-71

    PubMed  Google Scholar 

  • de Wit R, Bouvier T (2006) “Everything is everywhere, but, the environment selects”; what did Baas-Becking and Beijerinck really say? Environ Microbiol 8:755-748

    PubMed  Google Scholar 

  • Dhillion SS, Anderson RC (1993) Seasonal dynamics of dominant species of arbuscular mycor- rhizae in burned and unburned sand prairies. Can J Bot 71:1625-1630

    Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, Mass., pp 342-444

    Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484-496

    Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics follow- ing nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77(4):527-544

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129-151

    Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT, Figge DA (1999) Effects of fire, mowing and fertilizer amendments on arbuscular mycorrhizas in tallgrass prairie. Am Midl Nat 142:55-69

    Google Scholar 

  • Eom AH, Wilson GWT, Hartnett DC (2001) Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia. 93:233-242

    Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177-183

    Google Scholar 

  • Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S, Perez-Perez GI, Yamaoka Y, Megraud F, Otto K, Reichard U, Katzowitsch E, Wang X, Achtman M, Suerbaum S (2003) Traces of human migrations in Helicobacter pylori popula- tions. Science 299:1582-1585

    CAS  PubMed  Google Scholar 

  • Feldmann F (1998) The strain-inherent variability of arbuscular mycorrhizal effectiveness. Symbiosis 25:131-143

    Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231-243

    Google Scholar 

  • FitzJohn RG, Dickie IA (2007) TRAMPR: AN R package for analysis and matching of terminal- restriction fragment length polymorphism (TRFLP) profiles. Mol Ecol Notes 7: 583-587

    CAS  Google Scholar 

  • Franklin RB, Mills AL (2003) Multi-scale variation in spatial heterogeneity for microbial com- munity structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol 44:335-346

    CAS  PubMed  Google Scholar 

  • Fry JC (1990) Direct methods and biomass estimation. In: Grigorova R, Norris JR (eds) Methods in microbiology, vol 22. Academic, London, pp 41-85

    Google Scholar 

  • Gange AC, VK Brown (2002) Actions and interactions of soil invertebrates and arbuscular mycor- rhizal fungi in affecting the structure of plant communities. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 321-344

    Google Scholar 

  • Gehring CA, Whitham TG (2002) Mycorrhizae-herbivore interactions: population and community consequences. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 297-320

    Google Scholar 

  • Gehring CA, Wolf JE, Theimer TC (2002) Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil. Ecol Lett 5:540-548

    Google Scholar 

  • Gemma JN, Koske RE, Carreiro M (1989) Seasonal dynamics of selected species of V-A mycor- rhizal fungi in a sand dune. Mycol Res 92:317-321

    Google Scholar 

  • Gianinazzi-Pearson V, Diem HG (1982) Endomycorrhizae in the Tropics. In: Dommergues YR, Diem HG (eds) Microbiology of tropical soils - implications in soil management. Nijhoff, The Hague, pp 209-251

    Google Scholar 

  • Giovannetti M (1985) Seasonal variations of vesicular-arbuscular mycorrhizas and endogona- ceous spores in a maritime sand dune. Trans Br Mycol Soc 84:679-684

    Google Scholar 

  • Gotelli NJ, Entsminger GL (2004) EcoSim: null models software for ecology. Version 7. Acquired Intelligence and Kesey-Bear, Jericho, Vt.

    Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, New York

    Google Scholar 

  • Grace JB, Pugesek BH (1998) On the use of path analysis and related procedures for the investiga- tion of ecological problems. Am Nat 152:151-159

    CAS  PubMed  Google Scholar 

  • Green JL, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501-507

    PubMed  Google Scholar 

  • Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie A (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747-750

    CAS  PubMed  Google Scholar 

  • Grinnell, J (1917) The niche relationships of the California Thrasher. Auk 34:427-433

    Google Scholar 

  • Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007) What matters for predicting spatial distributions of trees: techniques, data, or species’ characteristics? Ecol Monogr (in press)

    Google Scholar 

  • Hart MM, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 225-242

    Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335-344

    Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976-985

    Google Scholar 

  • Helgason T, Fitter A (2005) The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist 19:96-101

    Google Scholar 

  • Herrera-Peraza RA, Cuenca G, Walker C (2001) Scutellospora crenulata, a new species of Glomales from La Gran Sabana, Venezuela. Can J Bot 79:674-678

    Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192-211.

    PubMed  Google Scholar 

  • Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa-area relationship for bacteria. Nature 432:750-753

    CAS  PubMed  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855-1871

    CAS  PubMed  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia; or, why are there so many kinds of animals? Am Nat 93:145-159

    Google Scholar 

  • Janos DP, Sahley CT, Emmons LH (1995) Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in Amazonian Peru. Ecology 76:1852-1858

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118:471-476

    Google Scholar 

  • Johnson NC, Pfleger FL (1992) Vesicular-arbuscular mycorrhizae and cultural stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy, Madison, Wis., pp 71-99

    Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communi- ties. Ecology 73:2034-2042

    Google Scholar 

  • Johnson D, Vanerkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community com- position in grassland microcosms. New Phytol 161:503-515

    Google Scholar 

  • Johnson NC, Wedin DA (1997) Soil carbon, nutrients and mycorrhizal fungal communities during conversion of a dry tropical forest to grassland. Ecol Appl 7:171-182

    Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrich- ment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895-1908

    Google Scholar 

  • Johnson NC, Hoeksema JD, Bever JD, Chaudhary VB, Gehring C, Klironomos J, Koide R, Miller RM, Moore J, Moutoglis P, Schwartz M, Simard S, Swenson W, Umbanhowar J, Wilson G, Zabinski C (2006) From Lilliput to Brobdingnag: extending models of mycorrhizal function across scales. Bioscience 56:889-900

    Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292-2301

    Google Scholar 

  • Koske RE (1987) Distribution of vesicular-arbuscular mycorrhizal fungi along a latitudinal tem- perature gradient. Mycologia 79:55-68

    Google Scholar 

  • Kramadibrata K, Walker C, Schwarzott D, Schüssler A (2000) A new species of Scutellospora with a coiled germination shield. Ann Bot 86:21-27

    CAS  Google Scholar 

  • Lambert DH, Cole H, Baker DE (1980) Adaptation of vesicular-arbuscular mycorrhizae to edaphic factors. New Phytol 85:513-540

    Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95-105

    Google Scholar 

  • Lenski RE, Travisano M (1994) Dynamics of adaptation diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808-6814

    CAS  PubMed  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by deter- mining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516-4522

    CAS  PubMed  Google Scholar 

  • Lomolino MV (2004) Conservation biogeography. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer, Sunderland, Mass., pp 293-296

    Google Scholar 

  • Lomolino MV, Heaney LR (eds) (2004) Frontiers of biogeography: new directions in the geogra- phy of nature. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Lovelock CE, Andersen K, Morton JB (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135:268-279

    PubMed  Google Scholar 

  • MacKenzie DI (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species. Elsevier, Amsterdam

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton, N.J.

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209-220

    CAS  PubMed  Google Scholar 

  • Martiny JBH, Bohannan B, Brown J, Colwell R, Fuhrman J, Green J, Horner-Devine MC, Kane M, Krumins J, Kuske C, Morin P, Naeem S, Ovreas L, Reysenbach AL, Smith V, Staley L (2006) Microbial biogeography: putting microorganisms on the map. Nature Rev Microbiol 4:102-112

    CAS  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Or.

    Google Scholar 

  • McIlveen WD, Cole H (1976) Spore dispersal of Endogonaceae by worms, ants, wasps and birds. Can J Bot 54:1486-1489

    Google Scholar 

  • Miller RM (1987) Mycorrhizae and succession.. In: Jordan WR, Gilpin ME, Aber JD (eds) Restoration ecology: a synthetic approach to ecological research. Cambridge University Press, Cambridge, pp 205-220

    Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 3-18

    Google Scholar 

  • Miller SP, Bever JD (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119:586-592

    Google Scholar 

  • Morrall RAA (1974) Soil microfungi associated with aspen in Saskatchewan: synecology and quantitative analysis. Can J Bot 52:1803-1817

    Google Scholar 

  • Morton JB, Bentivenga SP (1994). Levels of diversity in endomycorrhizal fungi (Glomales, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups. Plant Soil 159:47-59

    Google Scholar 

  • Morton JB, Bentivenga SP, Bever JD (1995) Discovery, measurement, and interpretation of diver- sity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can J Bot 73:s25-s32

    Google Scholar 

  • Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81-90

    CAS  Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867-878

    Google Scholar 

  • Newsham K, Fitter A, Watkinson A (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407-411

    Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycor- rhizal fungal communities in different ecosystems around the globe. J Ecol 94:778-790

    Google Scholar 

  • Pawlowska TE (2005) Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol Lett 251:185-192

    CAS  PubMed  Google Scholar 

  • Pawlowska TE, Taylor JW (2005) Arbuscular mycorrhizal fungi: hyphal fusion and multigenomic structure (reply). Nature 433:E4

    CAS  Google Scholar 

  • Peterson AT (2006) Ecologic niche modeling and spatial patterns of disease transmission. Emerging Infectious Diseases 12:1822-1826

    PubMed  Google Scholar 

  • Peterson AT, Papes M, Kluza DA (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Science 51:863-868

    CAS  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The Future of Biodiversity. Science 269:347

    CAS  PubMed  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153-164

    CAS  PubMed  Google Scholar 

  • Ponder F (1980) Rabbits and grasshoppers: vectors of encomycorrhizal fungi on new coal mine spoil. North Central Forest Experiment Station, USDA Forest Service Research Note No. NE- 250.Washington, DC

    Google Scholar 

  • Porter WM, Robson AD, Abbott LK (1987) Factors controlling the distribution of vesicular-arbus- cular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24:663-672

    Google Scholar 

  • Pringle A, Bever JD (2002) Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot 89:1439-1446

    Google Scholar 

  • Pringle A, Taylor JW (2002) The fitness of filamentous fungi. Trends Microbiol 10:474-481

    CAS  PubMed  Google Scholar 

  • Pringle A, Vellinga EC (2006) Last chance to know? Using literature to explore the biogeography and invasion biology of the death cap mushroom Amanita phalloides (Vaill. ex Fr.: Fr.). Biol Invasions 8:1131-1144

    Google Scholar 

  • Rabatin SC, Rhodes LH (1982) Acaulospora bireticulata inside oribatid mites. Mycologia 74:859-861

    Google Scholar 

  • Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69-72

    CAS  PubMed  Google Scholar 

  • Raxworthy CJ, Martínez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta MA, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837-841

    CAS  PubMed  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376-391

    Google Scholar 

  • Read DJ, Koucheki HK, Hodgson T (1976) Vesicular-arbuscular mycorrhizae in natural vegeta- tion ecosystems. New Phytol 77:641-653

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920-1921

    CAS  PubMed  Google Scholar 

  • Riddle BR, Funk V (2004) Phylogeography and diversification. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer, Sunderland, Mass., pp 87-92

    Google Scholar 

  • Riddle BR, DJ Hafner (2004) The past and future roles of phylogeography in historical biogeog- raphy. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer, Sunderland, Mass., pp 93-110

    Google Scholar 

  • Rillig MC (2004a) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740-754

    Google Scholar 

  • Rillig MC (2004b) Arbuscular mycorrhizae, glomalin and soil quality. Can J Soil Sci 84:355-363

    Google Scholar 

  • Rogers YH, Venter JC (2005) Genomics: massively parallel sequencing. Nature 437:376-380

    Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514-527

    Google Scholar 

  • Rosendahl S, Stukenbrock EH (2004) Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analysis of LSU rDNA sequences. Mol Ecol 13:3179-3186

    CAS  PubMed  Google Scholar 

  • Rosenzweig ML (1992) Species diversity gradients: we know more and less than we thought. J Mammal 73:715-730

    Google Scholar 

  • Rothwell FM, Holt C (1978) Vesicular-arbuscular mycorrhizae established with Glomus fascicu- latus spores isolated from feces of cricetine mice. Northeast Forest Experiment Station, USDA Forest Service Research Note No. NE-259. Washington, DC

    Google Scholar 

  • Sanchez-Cordero V, Munguia M, Peterson AT (2004) GIS-based predictive biogeography in the context of conservation. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer, Sunderland, Mass., pp 311-324

    Google Scholar 

  • Sanders I (2002) Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. Am Nat 160:S128-S141

    PubMed  Google Scholar 

  • Sanders I, Fitter A (1992) Evidence for differential responses between host-fungus combinations of vesicular-arbuscular mycorrhizas from a grassland. Mycol Res 96:415-419

    Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi, 3rd edn. Synergistic Publications, Gainesville, Fla.

    Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364-374

    Google Scholar 

  • Schultz PA, Miller RM, Jastrow JD, Rivetta CV, Bever JD (2001). Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am J Bot 88:1650-1656

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylog- eny and evolution. Mycol Res 105:1413-1321

    Google Scholar 

  • Schwalbach MS, Fuhrman JA (2005) Wide-ranging abundances of aerobic, anoxygenic pho- totrophic bacteria in the world ocean revealed by epifluorescence and quantitative PCR. Limnol Oceanogr 50:620-628

    CAS  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal inoculum. Ecol Lett 9:501-515

    PubMed  Google Scholar 

  • Scotese, CR (2002) Cenozoic and mesozoic paleogeography: changing terrestrial biogeographic pathways. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer, Sunderland, Mass., pp 9-26

    Google Scholar 

  • Scott JM, Heglund PJ, Morrison ML (eds) (2002) Predicting species occurrences: issues of accu-racy and scale. Island Press, Washington, D.C

    Google Scholar 

  • Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis, structural equa-tions and causal inference. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sieverding E (1990) Ecology of VAM fungi in tropical agrosystems. Agric Ecosyst Environ 29:369-390

    Google Scholar 

  • Siguenza C, Corkidi L, Allen EB (2006a) Feedbacks of soil inoculum of mycorrhial fungi altered by N deposition on the growth of a native shrub and an invasive annual grass. Plant Soil 286:153-165

    Google Scholar 

  • Siguenza C, Crowley DE, Allen EB (2006B) Soil microorganisms of a native shrub and exotic grasses along a N deposition gradient. Appl Soil Ecol 32:13-26

    Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycor- rhizal fungi and coincidence with vascular land plants. Nature 363:67-69

    Google Scholar 

  • Simpson GG (1951) The species concept. Evolution 5:285-298

    Google Scholar 

  • Singer MJ, Munns DN (2002) Soils: an introduction. Pearson, N.J.

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627-632

    Google Scholar 

  • Staddon WJ, Trevors JT, Duchesne LC, Colombo CA (1998) Soil microbial diversity and com- munity structure across a climatic gradient in western Canada. Biodivers Cons 7:1081-1092

    Google Scholar 

  • Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of analysis. Math Computers Simulation 33:385-390.

    Google Scholar 

  • Stockwell DRB, Peters DP (1999) The GARP modelling system: problems and solutions to auto- mated spatial prediction. Int J Geogr Inf Syst 13:143-158

    Google Scholar 

  • Stutz JC, Morton JB (1996) Successive pot cultures reveal high species richness of arbuscular endomycorrhizal fungi in arid ecosystems. Can J Bot 74:1883-1889

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogenity/diversity: the importance of keystone struc- tures. J Biogeogr 31:79-92

    Google Scholar 

  • Tiedje JM (1995) Approaches to the comprehensive evaluation of prokaryote diversity of a habitat. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. CAB I, Wallingford, UK, pp 73-88

    Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782-787

    CAS  PubMed  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, Fla., pp 5-25

    Google Scholar 

  • van der Heijden M, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engle R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72

    CAS  Google Scholar 

  • Walker C (1992) Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales) - a possible way forward. Agronomie 12:887-897

    Google Scholar 

  • Warner NJ, Allen MF, MacMahon JA (1987) Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia 79:721-730

    Google Scholar 

  • Weiher E, Keddy P (2001) Ecological assembly rules: perspective, advances and retreats. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States: assessing the relative importance of habitat destruction, alien spe- cies, pollution, overexploitation, and disease. BioScience 48:607-615

    Google Scholar 

  • Wilson EO (1988) Biodiversity. National Academy Press, Washington, D.C.

    Google Scholar 

  • Wolfe B, Mummey D, Rillig M, Klironomos J (2007) Small-scale spatial heterogeneity of arbus- cular mycorrhizal fungal abundance and community composition in a wetland plant commu- nity. Mycorrhiza 17:175-183

    PubMed  Google Scholar 

  • Wright SD, Keeling J, Gillman LN (2006) The road from Santa Rosalia: a faster tempo of evolu- tion in tropical climates. Proc Natl Acad Sci USA 103:7718-7722

    CAS  PubMed  Google Scholar 

  • Zhang N, Blackwell M (2002) Population structure of dogwood anthracnose fungus. Phytopathology 92:1276-1283

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaudhary, V.B., Lau, M.K., Johnson, N.C. (2008). Macroecology of Microbes – Biogeography of the Glomeromycota. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_26

Download citation

Publish with us

Policies and ethics