Skip to main content

Mycorrhizal Fungi: What We Know and What Should We Know?

  • Chapter
Mycorrhiza

Mycorrhizal fungi are symbionts in roots of the majority of higher plants. These associations vary widely in structure and functions, but the most common interaction is the arbuscular mycorrhizal (AM) association. It is estimated that more than 80% of all terrestrial plants form this type of association. These include of many agriculturally and horticulturally important crop species (Smith and Read 1997). The AM symbiosis represents an ancient symbiosis (Pirozynski and Malloch 1975; Pirozynski and Dalpe 1989). Hyphae and arbuscules have been reported in fossils of Aglaophyton isolated from the Rhynie chert, and this evidence has established the existence of AM symbiosis in the early Devonian (Remy et al. 1994; Taylor et al. 1995). Furthermore, molecular works based on the nucleotide sequence divergence of 18s rDNA suggests that the Glomales arose 350–460 million years ago and that the symbiosis was instrumental in the successful colonization of land by plants (Simon et al. 1993a). During evolution, the AM symbiosis has been lost from about 10% of plants, including whole angiosperm families (Tester et al. 1987). AM fungi are probably the most ubiquitous fungi in agricultural soils, accounting for 5–36% of the total biomass in soil and 9–55% of the biomass of soil microorganisms (Olson et al. 1999). These fungi are a critical component in agricultural systems because these organisms can increase plant growth (Smith and Read 1997), plant reproductive capacity (Lu and Koide 1994), plant water stress tolerance (Gupta and Kumar 2000), and plant health through antagonistic and competitive effects on pests and pathogens (Gange and West 1994). This colonization may also enhance the plant’s resistance to biotic and abiotic stresses (Newsham et al. 1994; Subramanian et al. 1995; von Reichenbach and Schonbeck 1995; Ricken and Hofner 1996). AM fungi develop an extensive hyphal (extraradical hyphae) network with the plant root system which makes a significant contribution to the improvement of soil texture and water relations (Bethlenfalvay and Shuepp 1994). The main benefit to the host plant in the mycorrhizae symbiosis is the enhanced uptake of immobile soil nutrients, in particular phosphorus (Jakobsen 1999). Arbuscular mycorrhizal associations increase nitrogen accumulation in plant tissues as a result of the hyphae competing for mineralized organic soil nitrogen (Ibijbijen et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD (1984) The effect of mycorrhiza on plant growth. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, Fla, pp 113-130

    Google Scholar 

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular mycorrhizas. Agric Ecosyst Envir 35: 121-150

    Google Scholar 

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation two extremes in host specificity meet. EMBO J 18:281-289

    CAS  PubMed  Google Scholar 

  • Aldwell FEB, Hall IR (1987) A review of serological techniques for the identification of mycor- rhizal fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Proceedings of the 7th North American Sciences, University of Florida, Gainesville, Fla., pp 305-307

    Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF (1992) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York

    Google Scholar 

  • Allen MF, Moore TS, Christensen M (1980) Phytochromone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae I. Cytokinin increase in host plant. Can J Bot 91:437-446

    Google Scholar 

  • Allen MF, Moore TS, Christensen M (1982) Phytochromone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468-471

    CAS  Google Scholar 

  • Almeida RT, Schenck NC (1990) A revision of the genus Sclerocystis (Glomaceae, Glomales). Mycologia 82:703-714

    Google Scholar 

  • Andrade G, Azcon R, Bethlenfalvay GJ (1995) A rhizobacterium modifies plant and soil responses to the mycorrhizal fungus Glomus mosseae. Appl Soil Ecol 2:195-202

    Google Scholar 

  • Angle JS, Heckman JR (1986) Effect of soil pH and sewage sludge on VA mycorrhizal infection of soybeans. Plant Soil 93:437-441

    Google Scholar 

  • Azcon R, Azcon G, De Aguilar C, Barea JM (1978) Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol 80:359-364

    CAS  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 163-198

    Google Scholar 

  • Bago B (2000) Putative sites for nutrient uptake in arbuscular mycorrhizal fungi. Plant Soil 226:263-274

    CAS  Google Scholar 

  • Bago B, Vierheilig H, Piche Y, Azcon-Aguilar C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradi- ces grown in monoxenic culture. New Phytol 133:223-280

    Google Scholar 

  • Bagyaraj DJ, Menge JA (1978) Interaction between a VA Mycorrhiza and Azotobacter and their effects on rhizosphere mycoflora and plant growth. New Phytol 80:567-573

    Google Scholar 

  • Balaji B, Poulin MJ, Vierheilig H, Piche Y (1995) Responses of an arbuscular mycorrhizal fungus Gigaspora margarita to roots of non-mycorrhizal and mycorrhizal mutants of Pisum sativum L. Sparkle. Exp Mycol 19:275-283

    CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Barea JM (1986) Importance of hormones and root exudates in mycorrhizal phenomena. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 177-187

    Google Scholar 

  • Barea JM, Azcon-Aguilar C (1982) Production of plant growth regulating substances by the vesicular arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810-913

    CAS  PubMed  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhizal and mycotrophy in root systems derived from it. In: Sander FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 373-389

    Google Scholar 

  • Becard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T- DNA transformed roots. New Phytol 108:211-218

    CAS  Google Scholar 

  • Becard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi in vitro development. Protoplasma 174:62-68

    Google Scholar 

  • Becker DM, Bagley ST, Podila GK (1999) Effects of mycorrhizal-associated streptomycetes on growth of Laccaria bicolor, Cenococcum geophilum, and Armillaria species and on gene expression in Laccaria bicolor. Mycologia 91:33-40

    Google Scholar 

  • Bentivenga S P and Morton J B (1994) Stability and heritability of fatty acid methyl ester profiles of glomalean endomycorrhizal fungi. Mycol Res 98:1419-1426.

    CAS  Google Scholar 

  • Berch SM (1986) Endogonaceae: Taxonomy, specificity fossil record, phylogeny. In: Mukerji KG, Pathak NC, Singh VP (eds) Frontiers in applied microbiology, vol 2. India Print House, Lucknow, pp. 161-186

    Google Scholar 

  • Bethlenfalvay GJ, Schuepp H (1994) Arbuscular mycorrhizae and agrosystem stability. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizae on sustainable agriculture and natural ecosystems. Birkhause, Basel, pp 117-131

    Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schults PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71-82

    Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923-931

    Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Volker-Tichy H, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbours obligately intracellular bacteria. Appl Environ Microbiol 62:3005-3010

    CAS  PubMed  Google Scholar 

  • Bianciotto V, Lumini E, Lamfranco L, Minerdi O, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 46:4503-4509

    Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3-21

    Google Scholar 

  • Bonfante-Fasolo P, Tamagnone L, Peretto R, Esquerr-Tugaye MT, Mazau D, Mosiniak M, Vian B (1991) Immunocytochemical location of hydroxyproline rich glycoproteins at the interface between a mycorrhizal fungus and its host planta. Protoplasma 165:127-138

    CAS  Google Scholar 

  • Bowen GD (1980) Mycorrhizal roles in tropical plants and ecosystem. In: Mikola P (ed) Tropical mycorrhiza research. Clarendon Press, Oxford, pp 165-190

    Google Scholar 

  • Boyetchko SM, Tewari JP (1988) The effect of VA mycorrhizal fungi on infection by Bipolaris sorokiniana in barley. Can J Plant Pathol 10:361 (Abstr)

    Google Scholar 

  • Brundrett MC, Piche Y, Peterson RL(1985) A developmental study of the early stages in vesicular arbuscular mycorrhiza formation. Can J Bot 63:194

    Google Scholar 

  • Bucholtz F (1912) Beitrage zur Kenntnis der Gattung Endogone Link. Beih Bot Zbl 29:147-225

    Google Scholar 

  • Busse MD, Ellis JR (1985) Vesicular-arbuscular mycorrhizal (Glomus fasciculatum) influence on soybean drought tolerance in high phosphorus soil. Can J Bot 63:2290-2294

    Google Scholar 

  • Carling DE, Brown MF (1982) Anatomy and physiology of vesicular-arbuscular and nonmycor- rhizal roots. Phytopathology 72:1108-1114

    Google Scholar 

  • Caron M (1989) Potential use of mycorrhizae in control of soil-borne diseases Can J Plant Pathol 11:177-179

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1985) Influence of substrate on the interaction of Gloums intra- radices and Fusariun oxysporum f. sp. radicislcopersici on tomatoes. Plant Soil 87:233-239

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986a) Effect of Glomus intraradices on the infection by Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes over a 12-week period. Can J Bot 64:552-556

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986b) Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopathology 76:942-946

    CAS  Google Scholar 

  • Caron M, Fortin JA, Richard C (1986c) Effect of preinfestation of the soil by a vesicular-arbuscular mycorrhizal fungus, Gloums interaradices, on Fusarium crown and root rot of tomatoes. Phytoprotection 67:15-19

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986d) Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes. Can J Plant Pathol 8:12-16

    Google Scholar 

  • Clapp JP, Fitter AH, Young JPW (1999) Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Mol Ecol 8:915-921

    CAS  PubMed  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327-339

    Google Scholar 

  • Cox G, Tinker PB (1976) Translocation and transfer of nutrients in vesicular arbuscular mycor- rhizae, I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. New Phytol 77:371-378

    CAS  Google Scholar 

  • Cox GC, Sanders FET (1974) Ultrastructure of the host-fungus interface in a vesicular-arbuscular mycorrhiza. New Phytol 73:901-912

    Google Scholar 

  • Cress WA, Throneberry GO and Lindsey DL (1979) Kinetics of phosphorus absorption by mycor- rhizal and non mycorrhizal tomato roots. Plant Physiol 64:484-487

    CAS  PubMed  Google Scholar 

  • Cummings BA (1990) Use of RFLPs as a means of examining genetic relatedness in AM fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae, University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 63

    Google Scholar 

  • Dangeard PA (1896) Une maladie du peuplier dans l’ouest de la France. Botaniste 58:38-43

    Google Scholar 

  • Daniels BA, Trape JM (1980) Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 72:457-471

    CAS  Google Scholar 

  • Davidson K, Geringer JE (1990) Genetic studies of vesicular-arbuscular mycorrhizal fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae. University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 70

    Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass production of the arbuscular mycor- rhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237-1242

    Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm col- lection. Mycologia 90:579-585

    Google Scholar 

  • Dehne HW, Schonbeck F (1979) Investigations on the influence of endotrophic mycorrhiza on plant diseases I. Colonization of tomato plants by Fusarium oxysporum f.sp. Lycopersici. Phytopathol Z 95:105-110

    Google Scholar 

  • Diop TA, Becard G, Piche Y (1992) Long-term in vitro culture of an endomycorrhizal fungus Gigaspora margarita on Ri T- DNA transformed roost of carrot. Symbiosis 12:249-259

    Google Scholar 

  • Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared root inocula of vesicular arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza 5:17-22

    Google Scholar 

  • Dodd JC, Arias I, Koomen I, Hayman DS (1990) The management of populations of vesicular- arbuscular mycorrhizal fungi in acid-infertile soils of a savannah AM fungi. Plant Soil 122:241-247

    Google Scholar 

  • Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant Soil 226:131-151

    CAS  Google Scholar 

  • Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77-93

    Google Scholar 

  • Douds DD, Galvez L, Becard G, Kalpulnik Y (1998) Regulation of arbuscular mycorrhizal devel- opment by plant host and fungus species in alfalfa. New Phytol 138:27-35

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1989) The time-course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytol 111:693-698

    Google Scholar 

  • Edwards SG, Young JPW, Fitter AH (1998) Interactions between Pseudomonas fluorescens bio- control agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 166:297-303

    CAS  Google Scholar 

  • Feldmann F, Boyle C (1998) Concurrent development of arbuscular mycorrhizal colonization and powdery mildew infection on three Begonia hiemalis cultivars. Z Pflanzenkr Pflanzenschutz 105:121-129

    Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:252-533

    Google Scholar 

  • Fitter AH, Garbays J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123-132

    Google Scholar 

  • Fitter AH, Sanders IR (1992) Interactions with the soil fauna. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 333-354

    Google Scholar 

  • Frank AB (1885) Ueber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128-145

    Google Scholar 

  • Frank AB (1887) Ueber neue Mycorrhiza-formen. Ber Dtsch Bot Ges 5:395-409

    Google Scholar 

  • Frankenberger WT, Arshad M (1995) Microbial biosynthesis of auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soil. Dekker, New York, pp 35-71

    Google Scholar 

  • Fries EM (1849) Summa Vegetabilium Scandinaveae 2:261-572

    Google Scholar 

  • Furlan V (1993) Large scale application of endomycorrhizal fungi and technology transfer to the farmer. In: Peterson L, Schelkle M (eds) Proceedings 9th North American Conference on Mycorrhizae. August 8-12, 1993, Guelph, Ontario, Canada, p 77 (Abstr)

    Google Scholar 

  • Furlan V, Fortin JV (1977) Effects of light intensity on the formation of vesicular-arbucular endomycorrhizae on Alluim cepa by Gigaspora calospora. New Phytol 79:335-340

    Google Scholar 

  • Gallaud J (1905) Etude sur les mycorrhizes endotrophes. Rev Gen Bot 17:5-48, 66-86, 123-136, 223-249, 313-325, 425-433, 479-500

    Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar- feeding insects in Plantago lanceolata L. New Phytol 128:79-87

    Google Scholar 

  • George E (2000) Nutrient uptake. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 307-343

    Google Scholar 

  • Gerdemann JW, Trappe JM (1974) Endogonaceae in the pacific Northwest. Mycol Mem 5:1-76

    Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA (1991) Enzymatic studies on the metabolism of vesicular arbuscular mycorrhizae V, IsH+-ATP-hydroloysing enzyme a component of ATP-hydrolysing activities in plant-fungus interfaces. New Phytol 117:61-74

    CAS  Google Scholar 

  • Giovanetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM Fungi. Mycorrhiza 8:123-130

    Google Scholar 

  • Giovanetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogensis in arbuscular mycorrhizal fungi during preinfection stages. New Phytol 125:587-593

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489-500

    Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS (1991) Appressoriun Formation in AM fungi in presence of host and non-host plants. (Abstr) Fungal Cell Biology Ultrastructure, April 1991, Portsmouth, UK

    Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential morphogenesis in arbuscular mycorrhizal fungi during preinfection stages, New Phytol 125:587-593

    Google Scholar 

  • Gollottee A, Gianinazzi-Pearson V, Giovannetti M. Sbrana C, Avio L, Gianinazzi S (1993) Cellular localization and cytochemical probing of resistance reactions to rabuscular mycorrhizal fungi in a locus a myc-mutant of Pisum sativum L. Planta 191:112-122

    Google Scholar 

  • Graham JH, Menge JA (1982) Influence of vesicular arbuscular mycorrhizae and soil phosphorus on take-all disease of wheat. Phytopathology 72:95-98

    Google Scholar 

  • Gryndler M, Hrselova H (1998) Effect of diazotorphic bacteria isolated from a mycelium of arbuscular mycorrhizal fungi on colonization of maize roots by Glomus fistulosum. Biol Plant 41:617-621

    Google Scholar 

  • Gunze CMB, Henessy CMR (1980) Effect of host applied auxin in development of endomycor- rhiza in cowpeas. Trans Br Mycol Soc 74:247-241

    CAS  Google Scholar 

  • Gupta R, Kumar P (2000) Mycorrhizal plants in response to adverse environmental conditions. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer, New York, p,p67-84

    Google Scholar 

  • Hall IR (1978) Vesicular-arbuscular mycorrhizas on two varieties of maize and one of sweetcorn. NZ J Agric Res 21:517-519

    Google Scholar 

  • Harrison MJ (1997) The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci 2:54-60

    Google Scholar 

  • Harrison MJ (1998) Development of the arbuscular mycorrhizal symbiosis. Curr Op Plant Biol 1:360-365

    CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361-389

    CAS  PubMed  Google Scholar 

  • Hass H, Taylor TN, Remy W (1994) Fungi from the lower Devonian Rhynia Chert; mycopariasit- ism. Am J Bot 81:29-37

    Google Scholar 

  • Hayman DS (1982) Influence of soils and fertility on activity and survival of vesicular-arbuscular mycorrhizal fungi. Phytopathology 72:1119-1125

    Google Scholar 

  • Hayman DS, Mosse B (1971) Plant growth responses to vesicular arbuscular mycorrhiza. I Growth of Endogone-inoculated plants in phosphate deficient soils. New Phytol 70:19-22.

    CAS  Google Scholar 

  • Hepper CM (1987) Gel electrophoresis for identification of AM fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Proceedings of the 7th North American Conference on Mycorrhizae. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla., pp 308-310

    Google Scholar 

  • Hetrick BAD (1984) Ecology of VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC, Boca Raton, Fla., pp 35-55

    Google Scholar 

  • Hetrick BAD, Kitt DG, Wilson GT (1987) Effect of drought stress on growth response in corn, sudan grass and big bluestem to Glomus etunicatum. New Phytol 105:403-410

    Google Scholar 

  • Hirsch AM, Kalpulnik Y (1988) Signal transduction pathways in mycorrhizal association: Comparisons with Rhizobium legume symbiosis. Fung Gen Biol 23:205-212

    Google Scholar 

  • Howeler RH, Sieverding E, Saif SR (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil 100:249-283

    Google Scholar 

  • Ibijbijen J, Urquaiga S, Ismali M, Alve JR, Boddey RM (1996) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, and nitrogen fixation of three varieties of common bean (Phaseolus vulgaris). New Phytol 134:353-360

    CAS  Google Scholar 

  • Jakobsen I (1999) Transport of phosphorus and carbon in arbuscular mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology, 2nd edn. Springer, Heidelberg, pp 535-542

    Google Scholar 

  • Janos DP (1975) Effects of vesicular-arbuscular mycorrhizae on lowland tropical rain forest trees. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhiza. Academic, London, pp 437-446

    Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002a) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225-234

    CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Banke S, McDonald BA, Frossard E (2002b) Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycological Research 6:670-681

    Google Scholar 

  • Janse JM (1897) Les endophytes radicaux de quelques plantes Javanaises. Ann Jardin Bot Buitenzorg 14:53-201

    Google Scholar 

  • Jarstfer AG, Sylvia DM (1992) Incoulum Production and inoculation technologies of vesicular arbuscular mycorrhizal fungi. In: Metting B (ed) Soil technologies: applications in agriculture, forestry and environmental management. Dekker, New York, pp 349-377

    Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:665-676

    CAS  Google Scholar 

  • Johnson NC, Copeland PJ, Croolston RK, Pfleger FL (1992) Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron J 84:387-390

    Article  Google Scholar 

  • Joner E, van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycor- rhizal hyphae: a review. Plant Soil 226:199-210

    CAS  Google Scholar 

  • Jones FR (1924) A mycorrhizal fungus in the roots of legumes and some other plants. J Agric Res 29:459-470

    Google Scholar 

  • Kapoor R, Mukerji KG (1998) Microbial interactions in mycorrhizosphere of Anethum graveolens L. Phytomorphology 48:383-325

    Google Scholar 

  • Kegler H, Gottwald J (1998) Influence of mycorrhizae on the growth and resistance of asparagus. Arch Phytopathol Plant Prot 31:435-438

    Google Scholar 

  • Kim C, Webber DJ (1985) Distribution of VA mycorrhiza on halophytes on inland salt playas. Plant Soil 83:207-214

    CAS  Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511-517

    CAS  Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557-581

    CAS  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745-748.

    CAS  PubMed  Google Scholar 

  • Kulkarni SA, Kulkarni S, Sreenivas MN, Lulkarni S (1997) Interaction between vesicular- arbuscular (VA) mycorrhizae and Sclerotium rolfsii Sacc. in groundnut. Karnataka J Agric Sci 10:919-912

    Google Scholar 

  • Lambert DH, Cole Jr H, Baker DE (1980) Variation in the responses of Alfalfa clone and cultivars to mycorrhizae and phosphorus. Crop Sci 20:615-618

    Article  CAS  Google Scholar 

  • Li SL, Zhao SJ, Zhao LZ, Li SL, Zhao SJ, Zhao LZ (1997) Effects of VA mycorrhizae on the growth of eggplant and cucumber and control of diseases. Acta Phytophylact Sin 24:117-120

    Google Scholar 

  • Link HF (1809) Observations in ordines plantarum naturals. Die Gesellschaft naturforschender Freunde zu Berlin. Magazin Fur die neuesten Entdeckungen in der gesammten Naturkunde 3:33-58

    Google Scholar 

  • Lohman ML (1927) Occurrence of mycorrhiza in lowa forest plants. University of Iowa forest plants. Univ Iowa Stud Nat Hist 11:33-58

    Google Scholar 

  • Lu XH, Koide RT (1994) The effect of mycorrhizal infection on components of plant-growth and reproduction. New Phytol 128:211-218

    CAS  Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal asso- ciations. Mycol Res 94:120-122

    Google Scholar 

  • McGonigle TP, Miller MH (1993) Mycorrhizal development and phosphorus absorption in maize under conventional and reduced tillage. Soil Sci Soc Am J 57:1002-1006

    Article  CAS  Google Scholar 

  • Menge JA, Munnecke DE, Johnson ELV, Carnas DW (1978) Dosage response of the vesicular- arbuscular mycorrhizal fungi Glomus fasciculatus and G. constrictus to methyl bromide. Phytopathology 68:1368-1372

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579-584

    Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizae: molecular biology and physiology. Kluwer, Dordrecht, pp 3-18

    Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17-23

    Google Scholar 

  • Miller-Wideman MA, Watrud LS (1984) Sporulation of Gigaspora margarita on root cultures of tomato. Can J Microbiol 30:642-646

    Article  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Giagasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471-491

    Google Scholar 

  • Morton JB, Benny GL (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with tow new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181-195

    Google Scholar 

  • Mosse B (1959a) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Trans Br Mycol Soc 42:273-286

    Google Scholar 

  • Mosse B (1959b) Obsevations on the extramatrical mycelium of a vesicular-arbuscular endo- phyte. Trans Br Mycol Soc 42:439-448

    Google Scholar 

  • Mosse B (1977) Plant growth responses to vesicular-arbuscular mycorrhiza. X. Response of sty- losanthis and maize to inoculation in unsterile soils. New Phytol 78:277-288

    Google Scholar 

  • Mosse B, Bowen GD (1968) A key to the recognition of some Endogone spore types. Trans Br Mycol Soc 51:469-483

    Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215-223

    Google Scholar 

  • Mosse B, Powell CL, Hayman DS (1976) Plant growth responses to vesicular-arbuscular mycor- rhiza IX. Interactions between VA mycorrhiza rock phosphate and symbiotic nitrogen fixation. New Phytol 76:331-342

    CAS  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infections in transformed root inducing T-DNA roots grown axenically. Phytopathology 77:1045-1050

    Google Scholar 

  • Nagahashi G, Douds DD, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the AM fungus Gigaspora margarita directly and indirectly through its effect on root exuda- tion. Mycorrhiza 6:403-408

    CAS  Google Scholar 

  • Nageli C (1842) Pilze im Innern von Zellen. Linnaea 16:278-285

    Google Scholar 

  • Nelson LL, Allen AB (1993) Restoration of Stipa pulchra grasslands: Effects of mycorrhizae and competition from Avena barbata. Restoration Ecol 2:40-50

    Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139-145

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82:805-814

    Google Scholar 

  • Nicolson TH (1959) Mycorrhizae in the Gramineae, I. Vesicular-arbuscular endophytes, with specical reference to the external phase. Trans Br Mycol Soc 42:421-438

    Google Scholar 

  • Nicolson TH (1960) Mycorrhizae in the Gramineae, I. Development in different habitats, particu- larly sand dunes. Trans Br Mycol Soc 43:132-145

    Google Scholar 

  • Nicolson TH (1967) Vesicular-arbuscular mycorrhiza-a universal symbiosis, Sci Prog Oxford 55:561-581

    Google Scholar 

  • Nye P, Tinker PB (1977) Solute movement in the soil-root system. Blackwell, Oxford, p 342

    Google Scholar 

  • Oades JM (1993) Role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377-400

    Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815-828.

    Google Scholar 

  • Olsson PA, Thingstrub I, Jakobsen I, Baath E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879-1887

    CAS  Google Scholar 

  • Otto G, Winkler H (1995) Colonization of rootlets of some species of Rosaceae by actinomycetes, endotrophic mycorrhiza, and endotrophic nematodes in soil conducive to specific cherry replant disease. Z Pfanzenkraft Pflanzenschutz 102:63-68

    Google Scholar 

  • Pawlowska TE, Douds DD, Charvat I (1999) In vitro Propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 103:1549-1556

    Google Scholar 

  • Petri L (1903) Ricerche sul signifacto morfologica del prosporoidi (Sporangioli di Janse) nelle micorrize endotrofiche. Nuovo G Bot Ital 10:541

    Google Scholar 

  • Peyronel B (1924) Specie di “Endogone” produttrici di micorize endotrofiche. Boll Stn Patol Veg Roma 5:73-75

    Google Scholar 

  • Pfeffer CM, Bloss HE (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as infuenced by vesicular-arbuscular mycorrhiza and phosohorus fertilization. New Phytol 108:315-321.

    Google Scholar 

  • Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in arbuscular mycorrhiza. Plant Physiol 120:587-598

    CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158-160

    Google Scholar 

  • Pirozynski KA, Dalpe Y (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1-36

    Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153-164

    CAS  PubMed  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611-618

    Google Scholar 

  • Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effect of various organic compounds on growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol 141:517-524

    CAS  Google Scholar 

  • Read DJ, Koucheki HK, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol 77:641-653

    Google Scholar 

  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhiza fungi within colo- nized roots. Mycorrhiza 10:73-80

    CAS  Google Scholar 

  • Remy W, Taylor TN Hass H, Kerp H (1994) Four hundred million year old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841-11843.

    Google Scholar 

  • Rhodes LH, Gerdemann JW (1978) Translocation of calcium and phosphate by external hyphae of vesicular- arbuscular mycorrhizae. Soil Sci 126:125-126

    CAS  Google Scholar 

  • Ricken B, Hofner W (1996) Effect of arbuscular mycorrhizal fungi (AMF) on heavy-metal toler- ance of alfafa Medicago sativa L. and oat Avena sativa L. on a sewage sludge treated soil. Z Planzenernahr Bokenk 159:189-194

    CAS  Google Scholar 

  • Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34:1371-1374

    CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Tom WF (2001) Large contribution of arbus- cular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167-177.

    CAS  Google Scholar 

  • Rose SL, Youngberg GT (1981) Tripartite associations in snowbrush (Ceanothus velutinus): effect of vesicular- arbuscular mycorrhizae on growth nodulation and nitrogen fixation. Can J Bot 59:34-39

    CAS  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp) on the response of cucumbers (Cucumis sativus, L.,) to salt stress. Environ Exp Bot 31:313-318

    Google Scholar 

  • Rosendahl S, Taylor JW (1997) Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP. Mol Ecol 6:125-156

    Google Scholar 

  • Safir GR (1968) The influence of vesicular-arbuscular mycorrhiza on the resistance of onion to Pyrenochaeta terrestris. MS Thesis, University of Illinois, Urbana

    Google Scholar 

  • Sances FV, Ingham GR (1997) Conventional and organic alternatives to methyl bromide on Callifornia strawberries. Compost Sci Util 5:23-37

    Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA pol- ymorphisms among and within spores of the Glomales-application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419-427

    CAS  Google Scholar 

  • Scannerini S, Bellando M (1968) Sull’ultrastuttura delle micorrhize endotrofiche di Ornithogalum umbellatum L. in attivita vegetative. Atti Accad Sci Torino 102:795-809

    Google Scholar 

  • Schellenbaum L, Muller J, Boller T, Wiemken A, Schuepp H (1998) Effects of drought on non- mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol 138:59-66

    CAS  Google Scholar 

  • Schenck NC, Graham SO, Green NE (1975) Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia 76:1189-1192

    Google Scholar 

  • Schlicht A (1889) Beitrag zur Kenntniss der Vebreitung und Bedetung der Mycorhizen. Landwirtsch Jahrb 18:478-560

    Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1995) Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 15:271-287

    Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1997) Mycorrhizae, Biocides, and biocontrol: 3. Effects of three different fungicides on developmental stages of three AM fungi. Biol Fert Soils 24:18-26

    CAS  Google Scholar 

  • Schuessler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phyl- ogeny and evolution. Mycol Res105:1413-1421

    Google Scholar 

  • Schweiger PF, Thingstrup I, Jakobsen I (1999) Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8:207-213

    CAS  Google Scholar 

  • Shalaby AM, Hanna MM (1998) Preliminary studies on interactions between VA mycorrhizal fungus Glomus mosseae, Bradyrhizabium japonicum and Pseudomonas syringae in soybean plants. Acta Microbiol Pol 47:385-391

    Google Scholar 

  • Sharma DD, Govindaiah Katiyar RS, Das PK, Janardhan L, Bajpai AK, Choudhry PC, Janardhan L (1995) Effect of VA mycorrhizal fungi on the incidence of major mulberrt diseases. Indian J Seric 34:34-37

    Google Scholar 

  • Simon L, Lalonde M, Bruns T (1990) Amplification and direct sequencing of ribosomal genes form AM fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae, University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 265

    Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) specific amplification of 18s fungal ribosomal genes from vesicular- arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291-295

    CAS  PubMed  Google Scholar 

  • Simon L, Bousquet J, Roger, Levesqus C, Lalinde M (1993a) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67-69

    Google Scholar 

  • Simon L, Levesque RC, Lalinde M (1993b) Identification of endomycorrhizal fungi colonizing roots by fluoresecent single-strand conformation polymorphism-polymerase chain reaction. Appl Environ Microbiol 59:4211-4215

    CAS  PubMed  Google Scholar 

  • Skipper HD, Smith GW (1979) Influence of soil pH on the soybean endomyceorrizha symbiosis. Plant Soil 53:559-563

    Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in vesicular-arbuscular mycorrhizal symbioses. New Phytol 137:373-388

    Google Scholar 

  • Smith GS, Roncadori RW, Hussey RS (1986) Interaction of endomycorrhizal fungi, superphos- phate and Meliodogyne incognita on cotton in microplot and field studies. J Nematol 18:208-216

    CAS  PubMed  Google Scholar 

  • Smith SE, Gianinnazzi-Pearson V (1988) Physiological interactions between symbionts in vesicu- lar arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221-244

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Sparling GP, Tinker PB (1975) Mycorrhizas in pennine grassland. In: Sanders FE, Moss B, Tinker PB (eds) Endomycorrhizas. Proceedings of a symposium, University of Leeds, 22-25 July 1947, Academic, London

    Google Scholar 

  • Sreeramula K. R, Onkarappa T, Swamy HN (1998) Biocontrol of damping off and black shank disease in tobacco nursery. Tob Res 24:1-4

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f.sp. chrysamthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Gloums intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431-438

    Google Scholar 

  • Stubblefield SP, Talyor TN, Trappe JM (1987) Fossil mycorrhizae: a case for symbiosis. Science 237:59-60

    PubMed  CAS  Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1995) Arbuscular mycorrhizas and water relations in maize under drought stress at tasseling. New Phytol 129:643-650

    Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560-573

    Google Scholar 

  • Tester M, Smith SE, Smith FA (1987) The phemomenon of non-mycorrhizal plants. Can J Bot 65:416-431

    Google Scholar 

  • Thaxter R (1922) A revision of the Endogoneae. Proc Am Acad Arts Sci 57:292- 348

    Google Scholar 

  • Tinker PB (1978) Effect of vesicular-arbuscular mycorrhizae on plants nutrition and plant growth. Physiol Vegetable 16:743-775

    CAS  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiospems from an evolutionary viewpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, Fla., pp 5-25

    Google Scholar 

  • Trappe JM, Schenck NC (1982) Taxonomy of the fungi forming endomycorrhizae. A. Vesicular- arbuscular mycorrhizal fungi (Endogonales). In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytophological Society, St, Paul, Minn., pp 1-10

    Google Scholar 

  • Tulasne LR, Tulasne C (1844) Fungi nonnulli hipogaei novi V. minus cogniti auct. G Bot Ital 2: 55-63

    Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72

    Google Scholar 

  • Varma A (1995) Ecophysiology and application of arbuscular mycorrhizal fungi in arid soils. In: Varma A, Hock B (eds) Mycorrhiza:- structure, function and physiology. Springer, Heidelberg, pp 561-591

    Google Scholar 

  • Villegas J, Williams RD, Nantais L, Archambault J, Fortin JA (1996) Effect of N source on pH and nutrient exchange of extrametrical mycelium in a mycorrhizal Ri T-DNA transformed root system. Mycorrhiza 6:247-251

    CAS  Google Scholar 

  • Vivekanandan M, Fixen PE (1991) Cropping systems effect on mycorrhizal colonization, early growth, and phosphorus uptake of corn. Soil Sci Soc Am J 55:136-140

    Article  CAS  Google Scholar 

  • von Reichenbach HG, Schonbeck F (1995) Influence of VA-mycorrhiza on drought tolerance of flax Linum usitatissimum L. 2. Effect of VA-mycorrhiza on stomatal gas exchange, shoot water potential, phosphorus-nutrition and the accumulation of stress metabolites. J Appl Bot 69:193-188

    Google Scholar 

  • Walker C (1987) Current concepts in the taxonomy of the Endogonaceae. Proceedings of the 7th ANCOM. IFAS, University of Florida, Gainesville, Fla

    Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glyco- protein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 7:97-107

    Google Scholar 

  • Wu CG (1993) Glomales of Taiwan: III A comparative study of spore ontogeny in Sclerocystis (Glomaceae, Glomales). Mycotaxon 47:25-39

    Google Scholar 

  • Wulfsohn D, Nyengaard JR (1999) Simple stereological procedure to estimate the number and dimensions of root hairs. Plant Soil 209:129-136

    CAS  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181-188

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mohammadi Goltapeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goltapeh, E.M., Danesh, Y.R., Prasad, R., Varma, A. (2008). Mycorrhizal Fungi: What We Know and What Should We Know?. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_1

Download citation

Publish with us

Policies and ethics