Skip to main content

Learning Gaussian Graphical Models of Gene Networks with False Discovery Rate Control

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4973))

Abstract

In many cases what matters is not whether a false discovery is made or not but the expected proportion of false discoveries among all the discoveries made, i.e. the so-called false discovery rate (FDR). We present an algorithm aiming at controlling the FDR of edges when learning Gaussian graphical models (GGMs). The algorithm is particularly suitable when dealing with more nodes than samples, e.g. when learning GGMs of gene networks from gene expression data. We illustrate this on the Rosetta compendium [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://amigo.geneontology.org/cgi-bin/amigo/go.cgi

  2. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley, Chichester (1984)

    MATH  Google Scholar 

  3. Benjamini, Y., Yekutieli, D.: The Control of the False Discovery Rate in Multiple Testing under Dependency. Annals of Statistics 29, 1165–1188 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Castelo, R., Roverato, A.: A Robust Procedure for Gaussian Graphical Model Search from Microarray Data with p Larger than n. Journal of Machine Learning Research 7, 2621–2650 (2006)

    MathSciNet  Google Scholar 

  5. De Freitas, J.M., Kim, J.H., Poynton, H., Su, T., Wintz, H., Fox, T., Holman, P., Loguinov, A., Keles, S., van der Laan, M., Vulpe, C.: Exploratory and Confirmatory Gene Expression Profiling of mac1Δ. Journal of Biological Chemistry 279, 4450–4458 (2004)

    Article  Google Scholar 

  6. Dobra, A., Hans, C., Jones, B., Nevins, J.R., Yao, G., West, M.: Sparse Graphical Models for Exploring Gene Expression Data. Journal of Multivariate Analysis 90, 196–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Geiger, D., Heckerman, D.: Learning Gaussian Networks. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pp. 235–243 (1994)

    Google Scholar 

  8. Hughes, T.R., et al.: Functional Discovery via a Compendium of Expression Profiles. Cell 102, 109–126 (2000)

    Article  Google Scholar 

  9. Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., West, M.: Experiments in Stochastic Computation for High Dimensional Graphical Models. Statistical Science 20, 388–400 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kalisch, M., Bühlmann, P.: Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm. Journal of Machine Learning Research 8, 613–636 (2007)

    Google Scholar 

  11. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)

    Google Scholar 

  12. Lesuisse, E., Blaiseau, P.L., Dancis, A., Camadro, J.M.: Siderophore Uptake and Use by the Yeast Saccharomyces cerevisiae. Microbiology 147, 289–298 (2001)

    Google Scholar 

  13. Meek, C.: Strong Completeness and Faithfulness in Bayesian Networks. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 411–418 (1995)

    Google Scholar 

  14. Meinshausen, N., Bühlmann, P.: High-Dimensional Graphs and Variable Selection with the Lasso. Annals of Statistics 34, 1436–1462 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  16. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring Subnetworks from Perturbed Expression Profiles. Bioinformatics 224, S215–S224 (2001)

    Google Scholar 

  17. Peña, J.M., Nilsson, R., Björkegren, J., Tegnér, J.: Growing Bayesian Network Models of Gene Networks from Seed Genes. Bioinformatics 229, ii224–ii229 (2005)

    Google Scholar 

  18. Peña, J.M., Nilsson, R., Björkegren, J., Tegnér, J.: Reading Dependencies from the Minimal Undirected Independence Map of a Graphoid that Satisfies Weak Transitivity. In: Proceedings of the Third European Workshop on Probabilistic Graphical Models, pp. 247–254 (2006)

    Google Scholar 

  19. Peña, J.M., Nilsson, R., Björkegren, J., Tegnér, J.: Towards Scalable and Data Efficient Learning of Markov Boundaries. International Journal of Approximate Reasoning 45, 211–232 (2007)

    Article  MATH  Google Scholar 

  20. Philpott, C.C., Protchenko, O., Kim, Y.W., Boretsky, Y., Shakoury-Elizeh, M.: The Response to Iron Deprivation in Saccharomyces cerevisiae: Expression of Siderophore-Based Systems of Iron Uptake. Biochemical Society Transactions 30, 698–702 (2002)

    Article  Google Scholar 

  21. Protchenko, O., Ferea, T., Rashford, J., Tiedeman, J., Brown, P.O., Botstein, D., Philpott, C.C.: Three Cell Wall Mannoproteins Facilitate the Uptake of Iron in Saccharomyces cerevisiae. The Journal of Biological Chemistry 276, 49244–49250 (2001)

    Article  Google Scholar 

  22. Reimand, J., Kull, M., Peterson, H., Hansen, J., Vilo, J.: g:Profiler – A Web-Based Toolset for Functional Profiling of Gene Lists from Large-Scale Experiments. Nucleic Acids Research 200, W193–W200 (2007)

    Google Scholar 

  23. Santos, R., Dancis, A., Eide, D., Camadro, J.M., Lesuisse, E.: Zinc Suppresses the Iron-Accumulation Phenotype of Saccharomyces cerevisiae Lacking the Yeast Frataxin Homologue (Yfh1). Biochemical Journal 375, 247–254 (2003)

    Article  Google Scholar 

  24. Shakoury-Elizeh, M., Tiedeman, J., Rashford, J., Ferea, T., Demeter, J., Garcia, E., Rolfes, R., Brown, P.O., Botstein, D., Philpott, C.C.: Transcriptional Remodeling in Response to Iron Deprivation in Saccharomyces cerevisiae. Molecular Biology of the Cell 15, 1233–1243 (2004)

    Article  Google Scholar 

  25. Schäfer, J., Strimmer, K.: An Empirical Bayes Approach to Inferring Large-Scale Gene Association Networks. Bioinformatics 21, 754–764 (2005)

    Article  Google Scholar 

  26. Schäfer, J., Strimmer, K.: A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics. Statistical Applications in Genetics and Molecular Biology 4 (2005)

    Google Scholar 

  27. Studený, M.: Probabilistic Conditional Independence Structures. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  28. Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Algorithms for Large Scale Markov Blanket Discovery. In: Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference, pp. 376–380 (2003)

    Google Scholar 

  29. Werhli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative Evaluation of Reverse Engineering Gene Regulatory Networks with Relevance Networks, Graphical Gaussian Models and Bayesian Networks. Bioinformatics 22, 2523–2531 (2006)

    Article  Google Scholar 

  30. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. John Wiley, Chichester (1990)

    MATH  Google Scholar 

  31. Wille, A., Bühlmann, P.: Low-Order Conditional Independence Graphs for Inferring Genetic Networks. Statistical Applications in Genetics and Molecular Biology 5 (2006)

    Google Scholar 

  32. Wille, A., Zimmermann, P., Vranova, E., Fürholz, A., Laule, O., Bleuler, S., Hennig, L., Prelic, A., von Rohr, P., Thiele, L., Zitzler, E., Gruissem, W., Bühlmann, P.: Sparse Graphical Gaussian Modeling of the Isoprenoid Gene Network in Arabidopsis thaliana. Genome Biology 5, 1–13 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peña, J.M. (2008). Learning Gaussian Graphical Models of Gene Networks with False Discovery Rate Control. In: Marchiori, E., Moore, J.H. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2008. Lecture Notes in Computer Science, vol 4973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78757-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78757-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78756-3

  • Online ISBN: 978-3-540-78757-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics