Skip to main content

Caveolae and Cancer

  • Chapter
  • First Online:
Angiogenesis Inhibition

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 180))

Abstract

All blood vessels are lined by a layer of endothelial cells that help to control vascular permeability. The luminal surface of vascular endothelial cells is studded with transport vesicles called caveolae that are directly in contact with the blood and can transport molecules into and across the endothelium. The vasculature within distinct tissue types expresses a unique array of proteins that can be used to target intravenously injected antibodies directly to that tissue. When the tissuespecific proteins are concentrated in caveolae, the antibodies can be rapidly pumped out of the blood and into the tissue. Tumors appear to be a distinct tissue type with their own unique marker proteins. Targeting accessible proteins at the surface of tumor vasculature with radiolabeled antibodies destroys tumors and drastically increases animal survival. One day, it may be possible to specifically pump targeted molecules into tumors. This could increase therapeutic efficacy and decrease side effects because most of the drug would accumulate specifically in the tumor. Thus, targeting caveolae may provide a universal portal to pump drugs, imaging agents, and gene vectors out of the blood and into underlying tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD (1997) Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol 138:1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Anzick SL, Trent JM (2002) Role of genomics in identifying new targets for cancer therapy. Oncology (Huntingt) 16:7–13

    Google Scholar 

  • Auerbach R, Alby L, Morrissey LW, Tu M, Joseph J (1985) Expression of organ-specific antigens on capillary endothelial cells. Microvasc Res 29:401–411

    Article  PubMed  CAS  Google Scholar 

  • Blood CH, Zetter BR (1990) Tumor interaction with the vasculature: angiogenesis and tumor metastasis. Biochim Biophys Acta 1032:89–118

    PubMed  CAS  Google Scholar 

  • Boyd NL, Park H, Yi H, Boo YC, Sorescu GP, Sykes M, Jo H (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285:H1113–H1122

    Google Scholar 

  • Bruns RR, Palade GE (1968) Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol 37:244–276

    Article  PubMed  CAS  Google Scholar 

  • Carver LA, Schnitzer JE (2007a) Proteomic mapping of endothelium and vascular targeting in vivo. In: Aird WC (ed) Endothelial biomedicine. Cambridge University Press, New york, pp 881–898

    Chapter  Google Scholar 

  • Carver LA, Schnitzer JE (2007b) Multiple functions and clinical uses of caveolae in endothelium. In: Aird WC (ed) Endothelial biomedicine. Cambridge University Press, New york, pp 664–678

    Chapter  Google Scholar 

  • De La Fuente EK, Dawson CA, Nelin LD, Bongard RD, McAuliffe TL, Merker MP (1997) Biotinylation of membrane proteins accessible via the pulmonary circulation in normal and hyperoxic rats. Am J Physiol 272:L461–L470

    Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Durr E, Yu J, Krasinska KM, Carver LA, Yates JRI, Testa JE, Oh P, Schnitzer JE (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992

    Article  PubMed  CAS  Google Scholar 

  • Dvorak HF, Nagy JA, Dvorak AM (1991) Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3:77–85

    PubMed  CAS  Google Scholar 

  • Empig CJ, Goldsmith MA (2002) Association of the caveola vesicular system with cellular entry by filoviruses. J Virol 76:5266–5270

    Article  PubMed  CAS  Google Scholar 

  • Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP (1998) Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 428:205–211

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Balligand JL (2006) Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 69:788–797

    Article  PubMed  CAS  Google Scholar 

  • Fra AM, Williamson E, Simons K, Parton RG (1994) Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 269:30745–30748

    PubMed  CAS  Google Scholar 

  • Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K (1992) Localization of inositol 1, 4, 5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119:1507–1513

    Article  PubMed  Google Scholar 

  • Ghinea N, Mai TV, Groyer-Picard MT, Milgrom E (1994) How protein hormones reach their target cells. Receptor-mediated transcytosis of hCG through endothelial cells. J Cell Biol 125:87–97

    Article  PubMed  CAS  Google Scholar 

  • Ghitescu L, Bendayan M (1992) Transendothelial transport of serum albumin: a quantitative immunocytochemical study. J Cell Biol 117:745–755

    Article  PubMed  CAS  Google Scholar 

  • Ghitescu L, Fixman A, Simionescu M, Simionescu N (1986) Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 102:1304–1311

    Article  PubMed  CAS  Google Scholar 

  • Goda Y, Pfeffer SR (1991) Identification of a novel, N-ethylmaleimide-sensitive cytosolic factor required for vesicular transport from endosomes to the trans-golgi network in vitro. J Cell Biol 112:823–831

    Article  PubMed  CAS  Google Scholar 

  • Griffoni C, Spisni E, Santi S, Riccio M, Guarnieri T, Tomasi V (2000) Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 276:756–761

    Article  PubMed  CAS  Google Scholar 

  • Gumkowski F, Kaminska G, Kaminski M, Morrissey LW, Auerbach R (1987) Heterogeneity of mouse vascular endothelium. Blood Vessels 24:11–23

    PubMed  CAS  Google Scholar 

  • Henley JR, Krueger EW, Oswald BJ, McNiven MA (1998) Dynamin-mediated internalization of caveolae. J Cell Biol 141:85–99

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE (1997) Tumor infraction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275:547–550

    Article  PubMed  CAS  Google Scholar 

  • Huber LA (2003) Is proteomics heading in the wrong direction? Nat Rev Mol Cell Biol 4:74–80

    Article  PubMed  CAS  Google Scholar 

  • Jacobson BS, Stolz DB, Schnitzer JE (1996) Identification of endothelial cell-surface proteins as targets for diagnosis and treatment of disease. Nat Med 2:482–484

    Article  PubMed  CAS  Google Scholar 

  • Jaffe EA (1987) Cell biology of endothelial cells. Hum Pathol 18:234–239

    Article  PubMed  CAS  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257

    Article  PubMed  CAS  Google Scholar 

  • Jennings MA, Florey L (1967) An investigation of some properties of endothelium related to capillary permeability. Proc R Soc Lond B Biol Sci 167:39–63

    Article  PubMed  CAS  Google Scholar 

  • Johansson BR (1979) Size and distribution of endothelial plasmalemmal vesicles in consecutive segments of the microvasculature in cat skeletal muscle. Microvasc Res 17:107–117

    Article  PubMed  CAS  Google Scholar 

  • Kallmann BA, Wagner S, Hummel V, Buttmann M, Bayas A, Tonn JC, Rieckmann P (2002) Characteristic gene expression profile of primary human cerebral endothelial cells. FASEB J 16:589–591

    PubMed  CAS  Google Scholar 

  • Lee J, Schmid-Schonbein GW (1995) Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility and pseudopod formation. Ann Biomed Eng 23:226–246

    Article  PubMed  CAS  Google Scholar 

  • Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP (1995) Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270:15693–15701

    Article  PubMed  CAS  Google Scholar 

  • Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yu J, Wang YZ, Griffin NM, Long F, Shore S, Oh P, Schnitzer JE (2009) Enhancing identifications of lipid-embedded proteins by mass spectrometry for improved mapping of endothelial plasma membranes in vivo. Mol Cell Proteomics 8(6):1219–1235

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MA (2003) Target discovery. Nat Rev Drug Discov 2:831–838

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Oh P, Horner T, Rogers RA, Schnitzer J (1997) Organized cell surface signal transduction in caveolae distinct from GPI-anchored protein microdomains. J Biol Chem 272:7211–7222

    Article  PubMed  CAS  Google Scholar 

  • Mackay RL, Consigli RA (1976) Early events in polyoma virus infection: attachment, penetration, and nuclear entry. J Virol 19:620–636

    PubMed  CAS  Google Scholar 

  • Madri JA, Williams SK (1983) Capillary endothelial cell culture: phenotype modulation by matrix components. J Cell Biol 97:153–165

    Article  PubMed  CAS  Google Scholar 

  • Malek AM, Izumo S (1995) Control of endothelial cell gene expression by flow. J Biomech 28: 1515–1528

    Article  PubMed  CAS  Google Scholar 

  • McIntosh DP, Tan X-Y, Oh P, Schnitzer JE (2002) Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc Natl Acad Sci USA 99:1996–2001

    Article  PubMed  CAS  Google Scholar 

  • Milici AJ, Watrous NE, Stukenbrok H, Palade GE (1987) Transcytosis of albumin in capillary endothelium. J Cell Biol 105:2603–2612

    Article  PubMed  CAS  Google Scholar 

  • Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6:911–927

    PubMed  CAS  Google Scholar 

  • Mora R, Bonilha VL, Marmorstein A, Scherer PE, Brown D, Lisanti MP, Rodriguez-Boulan E (1999) Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J Biol Chem 274:25708–25717

    Article  PubMed  CAS  Google Scholar 

  • Nicolson GL (1988) Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 948:175–224

    PubMed  CAS  Google Scholar 

  • Norkin LC (1999) Simian virus 40 infection via MHC class I molecules and caveolae. Immunol Rev 168:13–22

    Article  PubMed  CAS  Google Scholar 

  • Ogi M, Yokomori H, Oda M, Yoshimura K, Nomura M, Ohshima S, Akita M, Toda K, Ishii H (2003) Distribution and localization of caveolin-1 in sinusoidal cells in rat liver. Med Electron Microsc 36:33–40

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Schnitzer JE (1996) Dynamin-mediated fission of caveolae from plasma membranes. Mol Biol Cell 7:83a

    Google Scholar 

  • Oh P, Schnitzer JE (1998) solation and subfractionation of plasma membranes to purify caveolae separately from glycosyl-phospatidylinositol-anchored protein microdomains. In: Celis J (ed) Cell biology: a laboratory handbook. Academic Press, New York, pp 34–46

    Google Scholar 

  • Oh P, Schnitzer JE (1999) Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification. J Biol Chem 274: 23144–23154

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Schnitzer JE (2001) Segregation of heterotrimeric G proteins in cell surface microdomains: Gq binds caveolin to concentrate in caveolae whereas Gi and Gs target lipid rafts by default. Mol Biol Cell 12:685–698

    PubMed  CAS  Google Scholar 

  • Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Borgstrom P, Witkiewicz H, Li Y, Borgstrom BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE, Schnitzer JE (2007) Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 25:327–337

    Article  PubMed  CAS  Google Scholar 

  • Orlandi PA, Fishman PH (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141:905–915

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1953) Fine structureof blood capillaries. J Appl Phys 24:1424

    Google Scholar 

  • Park H, Go YM, St John PL, Maland MC, Lisanti MP, Abrahamson DR, Jo H (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 273: 32304–32311

    Article  PubMed  CAS  Google Scholar 

  • Park H, Go YM, Darji R, Choi JW, Lisanti MP, Maland MC, Jo H (2000) Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol Heart Circ Physiol 278:H1285–H1293

    Google Scholar 

  • Parolini I, Topa S, Sorice M, Pace A, Ceddia P, Montesoro E, Pavan A, Lisanti MP, Peschle C, Sargiacomo M (1999) Phorbol ester-induced disruption of the CD4-Lck complex occurs within a detergent-resistant microdomain of the plasma membrane. Involvement of the translocation of activated protein kinase C isoforms. J Biol Chem 274:14176–14187

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127: 1199–1215

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Kartenback J, Helenius A (2001) Caveolar endocytosis of Simian virus 40 reveals a novel two-step vesicular transport pathway to the ER. Nat Cell Biol 3:473–483

    Article  PubMed  CAS  Google Scholar 

  • Peters KR, Carley WW, Palade GE (1985) Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J Cell Biol 101:2233–2238

    Article  PubMed  CAS  Google Scholar 

  • Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 102: 430–437

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Woodman SE, Lisanti MP (2002a) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H Jr, Christ GJ, Edelmann W, Lisanti MP (2002b) Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 22:2329–2344

    Article  PubMed  CAS  Google Scholar 

  • Red-Horse K, Ferrara N (2007) Vascular targeting via caveolae. Nat Biotechnol 25:431–432

    Article  PubMed  CAS  Google Scholar 

  • Richterova Z, Liebl D, Horak M, Palkova Z, Stokrova J, Hozak P, Korb J, Forstova J (2001) Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J Virol 75:10880–10891

    Article  PubMed  CAS  Google Scholar 

  • Rizzo V, Sung A, Oh P, Schnitzer JE (1998a) Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273:26323–26329

    Article  PubMed  CAS  Google Scholar 

  • Rizzo V, McIntosh DP, Oh P, Schnitzer JE (1998b) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273:34724–34729

    Article  PubMed  CAS  Google Scholar 

  • Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285:H1720–H1729

    Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G (2005) In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2:291–298

    Article  PubMed  CAS  Google Scholar 

  • Sargiacomo M, Lisanti M, Graeve L, Le Bivic A, Rodriguez-Boulan E (1989) Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. J Membr Biol 107:277–286

    Article  PubMed  CAS  Google Scholar 

  • Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC, Lisanti MP (1995) Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci U S A 92:9407–9411

    Article  PubMed  CAS  Google Scholar 

  • Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272: 29337–29346

    Article  PubMed  CAS  Google Scholar 

  • Scheurer SB, Roesli C, Neri D, Elia G (2005) A comparison of different biotinylation reagents, tryptic digestion procedures, and mass spectrometric techniques for 2-D peptide mapping of membrane proteins. Proteomics 5:3035–3039

    Article  PubMed  CAS  Google Scholar 

  • Schlingemann RO, Rietveld FJ, Kwaspen F, van de Kerkhof PC, de Waal RM, Ruiter DJ (1991) Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol 138:1335–1347

    PubMed  CAS  Google Scholar 

  • Schnitzer JE (1997) Vascular endothelium: physiology, pathology and therapeutic opportunities. In: Born GVR, Schwartz CJ (eds) The endothelial cell surface and caveolae in health and disease. Schattauer, Stuttgart, pp 77–95

    Google Scholar 

  • Schnitzer JE, Oh P (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 269: 6072–6082

    PubMed  CAS  Google Scholar 

  • Schnitzer JE, Carley WW, Palade GE (1988a) Specific albumin binding to microvascular endothelium in culture. Am J Physiol 254:H425–H437

    Google Scholar 

  • Schnitzer JE, Carley WW, Palade GE (1988b) Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc Natl Acad Sci U S A 85:6773–6777

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, Bravo J, Sung A, Pinney E (1992) Non-coated caveolae-mediated endocytosis of modified proteins via novel scavenger receptors, gp30 and gp18. Mol Biol Cell 3:59a

    Google Scholar 

  • Schnitzer JE, Oh P, Jacobson BS, Dvorak AM (1994) Caveolin-enriched caveolae purified from endothelium in situ are transport vesicles for albondin-mediateed transcytosis of albumin. Mol Biol Cell 5:A75

    Google Scholar 

  • Schnitzer JE, Liu J, Oh P (1995a) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 270:14399–14404

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, Allard J, Oh P (1995b) NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am J Physiol 268:H48–H55

    Google Scholar 

  • Schnitzer JE, McIntosh DP, Dvorak AM, Liu J, Oh P (1995c) Separation of caveolae from associated microdomains of GPI-anchored proteins [see comments]. Science 269:1435–1439

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, Oh P, McIntosh DP (1996) Role of GTP hydrolysis in fission of caveolae directly from plasma membranes [publisher’s erratum appears in Science 1996 Nov 15;274(5290):1069]. Science 274:239–242

    Article  PubMed  CAS  Google Scholar 

  • Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP (2002) Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-name, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

    Article  PubMed  CAS  Google Scholar 

  • Severs NJ (1988) Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J Cell Sci 90:341–348

    PubMed  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1974) Morphometric data on the endothelium of blood capillaries. J Cell Biol 60:128–152

    Article  PubMed  CAS  Google Scholar 

  • Smart EJ, Ying YS, Mineo C, Anderson RG (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci U S A 92:10104–10108

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1991) Surface presentation of protein epitopes using bacteriophage expression systems. Curr Opin Biotechnol 2:668–673

    Article  PubMed  CAS  Google Scholar 

  • Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271:9690–9697

    Article  PubMed  CAS  Google Scholar 

  • Sowa G, Pypaert M, Fulton D, Sessa WC (2003) The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proc Natl Acad Sci U S A 100: 6511–6516

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271: 2255–2261

    Article  PubMed  CAS  Google Scholar 

  • Thum T, Haverich A, Borlak J (2000) Cellular dedifferentiation of endothelium is linked to activation and silencing of certain nuclear transcription factors: implications for endothelial dysfunction and vascular biology. FASEB J 14:740–751

    PubMed  CAS  Google Scholar 

  • Tran D, Carpentier JL, Sawano F, Gorden P, Orci L (1987) Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc Natl Acad Sci U S A 84: 7957–7961

    Article  PubMed  CAS  Google Scholar 

  • Valadon P, Nussbaum G, Oh J, Scharff MD (1998) Aspects of antigen mimicry revealed by immunization with a peptide mimetic of Cryptococcus neoformans polysaccharide. J Immunol 161: 1829–1836

    PubMed  CAS  Google Scholar 

  • Vitetta ES (2000) Immunotoxins and vascular leak syndrome. Cancer J 6(Suppl 3):S218–S224

    Google Scholar 

  • Wagner RC, Chen S-C (1991) Transcapillary transport of solute by the endothelial vesicular system: evidence from thin serial section analysis. Microvasc Res 42:139–150

    Article  PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  • Workman P (2001) New drug targets for genomic cancer therapy: successes, limitations, opportunities and future challenges. Curr Cancer Drug Targets 1:33–47

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Schnitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Massey, K.A., Schnitzer, J.E. (2010). Caveolae and Cancer. In: Liersch, R., Berdel, W., Kessler, T. (eds) Angiogenesis Inhibition. Recent Results in Cancer Research, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78281-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78281-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78280-3

  • Online ISBN: 978-3-540-78281-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics