Skip to main content

Theory of the Optical Response of Singleand Coupled Semiconductor Quantum Dots

  • Chapter
Semiconductor Nanostructures

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Due to their quasi-zero-dimensional structure, quantum dots show optical properties which are different from those of nanostructures with spatial confinement in less than three dimensions. In this chapter, the theory of both the linear optical properties and nonlinear dynamics of semiconductor quan- tum dots is discussed. The main focus is on the experimentally accessible quantities such as absorption/luminescence and pump-probe spectra. The results are calculated for single and coupled quantum dots (Förster coupling) as well as quantum dot ensembles. The focus is on obtaining a microscopic understanding of the interactions of optically excited quantum dot electrons with the surrounding crystal vibrations (electron–phonon coupling). The discussed interactions are important for applications in, e.g., quantum information processing and laser devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)

    Google Scholar 

  2. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)

    Google Scholar 

  3. N. Baer, S. Schulz, S. Schumacher, P. Gartner, G. Czycholl, F. Jahnke, Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation. Appl. Phys. Lett. 87(23), 231114 (2005)

    Article  CAS  Google Scholar 

  4. A.J. Williamson, A. Zunger, InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures. Phys. Rev. B 59(24), 15819 (1999)

    Article  CAS  Google Scholar 

  5. O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory. Phys. Rev. B 59(8), 5688 (1999)

    Article  CAS  Google Scholar 

  6. R. Heitz, O. Stier, I. Mukhametzhanov, A. Madhukar, D. Bimberg, Quantum size effect in self-organized InAs/GaAs quantum dots. Phys. Rev. B 62(16), 11017 (2000)

    Article  CAS  Google Scholar 

  7. B. Krummheuer, V.M. Axt, T. Kuhn, Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots. Phys. Rev. B 65(19), 195313 (2002)

    Article  CAS  Google Scholar 

  8. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, A.D. Wieck, Optical control of excitons in a pair of quantum dots coupled by the dipole–dipole interaction. Phys. Rev. Lett. 94(13), 137404 (2005)

    Article  CAS  Google Scholar 

  9. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 2004)

    Google Scholar 

  10. A. Thränhardt, S. Kuckenburg, A. Knorr, T. Meier, S.W. Koch, Quantum theory of phonon-assisted exciton formation and luminescence in semiconductor quantum wells. Phys. Rev. B 62(4), 2706 (2000)

    Article  Google Scholar 

  11. G.D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum, New York, 2000)

    Google Scholar 

  12. J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys. Rev. Lett. 91(12), 127401 (2003)

    Article  CAS  Google Scholar 

  13. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  14. K.J. Ahn, J. Förstner, A. Knorr, Resonance fluorescence of semiconductor quantum dots: Signatures of the electron-phonon interaction. Phys. Rev. B 71(15), 153309 (2005)

    Article  CAS  Google Scholar 

  15. F. Rossi, T. Kuhn, Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74(3), 895 (2002)

    Article  CAS  Google Scholar 

  16. J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phonon-induced damping of Rabi oscillations in semiconductor quantum dots. Phys. Status Solidi B 238(3), 419 (2003)

    Article  CAS  Google Scholar 

  17. J. Danckwerts, K.J. Ahn, J. Förstner, A. Knorr, Theory of ultrafast nonlinear optics of Coulomb-coupled semiconductor quantum dots: Rabi oscillations and pump-probe spectra. Phys. Rev. B 73(16), 165318 (2006)

    Article  CAS  Google Scholar 

  18. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 6, 55 (1948)

    Article  Google Scholar 

  19. T. Förster, Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, ed. by O. Sinanoglu (Academic, New York, 1965), p. 93

    Google Scholar 

  20. T. Stauber, R. Zimmermann, Optical absorption in quantum dots: Coupling to longitudinal optical phonons treated exactly. Phys. Rev. B 73(11), 115303 (2006)

    Article  CAS  Google Scholar 

  21. M. Kira, S.W. Koch, Quantum-optical spectroscopy of semiconductors. Phys. Rev. A 73(1), 013813 (2006)

    Article  CAS  Google Scholar 

  22. I. Waldmüller, J. Förstner, A. Knorr, Self-consistent projection operator theory of intersubband absorbance in semiconductor quantum wells, in Nonequilibrium Physics at Short Time Scales, ed. by K. Morawetz (Springer, Berlin, 2004), p. 251

    Google Scholar 

  23. M. Richter, M. Schaarschmidt, A. Knorr, W. Hoyer, J.V. Moloney, E.M. Wright, M. Kira, S.W. Koch, Quantum theory of incoherent THz emission of an interacting electron-ion plasma. Phys. Rev. A 71(5), 053819 (2005)

    Article  CAS  Google Scholar 

  24. M. Richter, S. Butscher, M. Schaarschmidt, A. Knorr, Model of thermal terahertz light emission of a two-dimensional electron gas. Phys. Rev. B 75(11), 115331 (2007)

    Article  CAS  Google Scholar 

  25. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    Google Scholar 

  26. V.M. Axt, A. Stahl, A dynamics-controlled truncation scheme for the hierarchy of density matrices in semiconductor optics. Z. Phys. B 93, 195 (1994)

    Article  CAS  Google Scholar 

  27. S. Butscher, A. Knorr, Theory of strong electron-phonon coupling for ultrafast intersubband excitations. Phys. Status Solidi B 243(10), 2423 (2006)

    Article  CAS  Google Scholar 

  28. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)

    Google Scholar 

  29. N.G. van Kampen, A cumulant expansion for stochastic linear differential equations. II. Physica 74, 239 (1974)

    Article  Google Scholar 

  30. J. Förstner, K.J. Ahn, J. Danckwerts, M. Schaarschmidt, I. Waldmüller, C. Weber, A. Knorr, Light propagation- and many-particle-induced non-Lorentzian lineshapes in semiconductor nanooptics. Phys. Status Solidi B 234(1), 155 (2002)

    Article  Google Scholar 

  31. R. Zimmermann, E. Runge, Dephasing in quantum dots via electron-phonon interaction, in Proc. 26th ICPS Edinburgh, ed. by A.R. Long, J.H. Davies. IOP Conf. Series, vol. 171 (IOP Publishing, Bristol, 2002). Paper M 3.1

    Google Scholar 

  32. T. Feldtmann, L. Schneebeli, M. Kira, S.W. Koch, Quantum theory of light emission from a semiconductor quantum dot. Phys. Rev. B 73(15), 155319 (2006)

    Article  CAS  Google Scholar 

  33. N. Baer, C. Gies, J. Wiersig, F. Jahnke, Luminescence of a semiconductor quantum dot system. Eur. Phys. J. B 50(3), 411 (2006)

    Article  CAS  Google Scholar 

  34. E.A. Muljarov, T. Takagahara, R. Zimmermann, Phonon-induced exciton dephasing in quantum dot molecules. Phys. Rev. Lett. 95(17), 177405 (2005)

    Article  CAS  Google Scholar 

  35. E.A. Muljarov, R. Zimmermann, Dephasing in quantum dots: Quadratic coupling to acoustic phonons. Phys. Rev. Lett. 93(23), 237401 (2004)

    Article  CAS  Google Scholar 

  36. P. Machnikowski, Change of decoherence scenario and appearance of localization due to reservoir anharmonicity. Phys. Rev. Lett. 96(14), 140405 (2006)

    Article  CAS  Google Scholar 

  37. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87(15), 157401 (2001)

    Article  CAS  Google Scholar 

  38. L. Besombes, K. Kheng, L. Marsal, H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63(15), 155307 (2001)

    Article  CAS  Google Scholar 

  39. I. Favero, G. Cassabois, R. Ferreira, D. Darson, C. Voisin, J. Tignon, C. Delalande, G. Bastard, P. Roussignol, Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots. Phys. Rev. B 68(23), 233301 (2003)

    Article  CAS  Google Scholar 

  40. A.V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, R. Lang, Dephasing times in quantum dots due to elastic LO phonon-carrier collisions. Phys. Rev. Lett. 85(7), 1516 (2000)

    Article  CAS  Google Scholar 

  41. P. Machnikowski, L. Jacak, Exciton-LO phonon dynamics in InAs/GaAs quantum dots: Effects of zone-edge phonon damping. Phys. Rev. B 71(11), 115309 (2005)

    Article  CAS  Google Scholar 

  42. E.A. Muljarov, R. Zimmermann, Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model. Phys. Rev. Lett. 98(18), 187401 (2007)

    Article  CAS  Google Scholar 

  43. B.R. Mollow, Pure-state analysis of resonant light scattering: Radiative damping, saturation, and multiphoton effects. Phys. Rev. A 12(5), 1919 (1975)

    Article  Google Scholar 

  44. I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652 (1937)

    Article  CAS  Google Scholar 

  45. I.I. Rabi, J.R. Zacharias, S. Millman, P. Kusch, A new method of measuring nuclear magnetic moment. Phys. Rev. 53(4), 318 (1938)

    Article  CAS  Google Scholar 

  46. A. Krügel, V.M. Axt, T. Kuhn, P. Machnikowski, A. Vagov, The role of acoustic phonons for Rabi oscillations in semiconductor quantum dots. Appl. Phys. B 81, 897 (2005)

    Article  CAS  Google Scholar 

  47. A. Vagov, M.D. Croitoru, V.M. Axt, T. Kuhn, F.M. Peeters, High pulse area undamping of Rabi oscillations in quantum dots coupled to phonons. Phys. Status Solidi B 243(10), 2233 (2006)

    Article  CAS  Google Scholar 

  48. A. Krügel, V.M. Axt, T. Kuhn, Back action of nonequilibrium phonons on the optically induced dynamics in semiconductor quantum dots. Phys. Rev. B 73(3), 035302 (2006)

    Article  CAS  Google Scholar 

  49. S. Stufler, P. Ester, A. Zrenner, M. Bichler, Quantum optical properties of a single In x Ga1−x As-GaAs quantum dot two-level system. Phys. Rev. B 72(12), 121301 (2005)

    Article  CAS  Google Scholar 

  50. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612 (2002)

    Article  CAS  Google Scholar 

  51. P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots. Phys. Rev. B 66(8), 081306 (2002)

    Article  CAS  Google Scholar 

  52. S.W. Koch, N. Peyghambarian, M. Lindberg, Transient and steady-state optical non-linearities in semiconductors. J. Phys. C 21, 5229 (1988)

    Article  CAS  Google Scholar 

  53. T. Guenther, C. Lienau, T. Elsaesser, M. Glanemann, V.M. Axt, T. Kuhn, S. Eshlaghi, A.D. Wieck, Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett. 89(5), 057401 (2002)

    Article  CAS  Google Scholar 

  54. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, A.D. Wieck, Optical Stark effect in a quantum dot: Ultrafast control of single exciton polarizations. Phys. Rev. Lett. 92(15), 157401 (2004)

    Article  CAS  Google Scholar 

  55. I.V. Ostrovskii, A.K. Rozhko, V.N. Lysenko, Ultrasonic luminescence of CdS single crystals. Sov. Tech. Phys. Lett. 5, 377 (1979)

    Google Scholar 

  56. P.P. Corso, L. Lo Cascio, F. Persico, Simple vectorial model for the spectrum of a two-level atom in an intense low-frequency field. Phys. Rev. A 58(2), 1549 (1998)

    Article  CAS  Google Scholar 

  57. F. Milde, K.J. Ahn, A. Knorr, Theory of quantum dot luminescence from acoustically excited intersubband transitions. Phys. Status Solidi B 243(10), 2257 (2006)

    Article  CAS  Google Scholar 

  58. K.J. Ahn, F. Milde, A. Knorr, Phonon-wave-induced resonance fluorescence in semiconductor nanostructures: Acoustoluminescence in the terahertz range. Phys. Rev. Lett. 98(2), 027401 (2007)

    Article  CAS  Google Scholar 

  59. T. Renger, R.A. Marcus, On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra. J. Chem. Phys. 116(22), 9997 (2002)

    Article  CAS  Google Scholar 

  60. M. Richter, K.J. Ahn, A. Knorr, A. Schliwa, D. Bimberg, M. El-Amine Madjet, T. Renger, Theory of excitation transfer in coupled nanostructures—from quantum dots to light harvesting complexes. Phys. Status Solidi B 243(10), 2302 (2006)

    Article  CAS  Google Scholar 

  61. Y. Mitsumori, A. Hasegawa, M. Sasaki, H. Maruki, F. Minami, Local field effect on Rabi oscillations of excitons localized to quantum islands in a single quantum well. Phys. Rev. B 71(23), 233305 (2005)

    Article  CAS  Google Scholar 

  62. A. Knorr, K.-E. Süsse, D.-G. Welsch, Coherent interatomic interaction and cooperative effects in resonance fluorescence. J. Opt. Soc. Am. B 9(7), 1174 (1992)

    Article  Google Scholar 

  63. K.J. Ahn, A. Knorr, Radiative lifetime of quantum confined excitons near interfaces. Phys. Rev. B 68(16), 161307 (2003)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, C., Richter, M., Ritter, S., Knorr, A. (2008). Theory of the Optical Response of Singleand Coupled Semiconductor Quantum Dots. In: Bimberg, D. (eds) Semiconductor Nanostructures. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77899-8_9

Download citation

Publish with us

Policies and ethics