Skip to main content

Quantification of Terrain Processes

  • Chapter
Advances in Digital Terrain Analysis

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Terrain processes quantification requires an object terrain segmentation framework allowing the partition of the landscape to either a continuous framework (aspect regions) or a discontinuous framework (landforms). Each object is parametrically represented on the basis of its spatial 3-dimensional arrangement and mapped according to a terrain classification scheme in an attempt to identify regions that include objects with distinct parametric representation. Case studies are presented that include tectonic, fluvial and aeolian, and gravity (landslides) processes quantification in both the Earth and Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argialas, D., and Miliaresis, G., (2001) Human factors in the Interpretation of Physiography by Symbolic and Numerical Representations within an Expert System, In Hoffman, R. and Markman, A. (eds): Interpreting Remote Sensing Imagery: Human factors, New York: CRC Press: 59–81.

    Google Scholar 

  • Berberian, M., (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics, 241: 193–224.

    Article  Google Scholar 

  • Bullard, J., (2006) Arid geomorphology, Progress in Physical Geography, 30: 542–552.

    Article  Google Scholar 

  • Evans, I., (1981) General geomorphometry, In Geomorphological techniques, Goudie, A. (ed.): British Geomorphological Research Group, London: Allen & Unwin: 31–37.

    Google Scholar 

  • Evans, I., Dikau, R., Tokunaga, E., Ohmori, H. and Hirano, M. (eds), (2003) Concepts and modelling in geomorphology, international perspectives, Tokyo, Japan: TERRAPUB. Available on-line at: http://www.terrapub.co.jp/e-library/ohmori/(accessed 25 March, 2007).

    Google Scholar 

  • Farr, T. and Kobrick, M., (2000) Shuttle radar topography mission produces a wealth of data, Amer. Geophys. Union Eos, 81, 583–585.

    Google Scholar 

  • Florinsky, I., (1998) Derivation of topographic variables from a digital elevation models given by a spheroidal trapezoidal grid. International Journal of Geographical Information Science, 12: 829–852.

    Article  Google Scholar 

  • Geologic Shell, (2001) Software for terrain segmentation, version 1, International Association for Mathematical Geology. Available on-line at: http://207.176. 140.93/documents/oldftp/VOL27/v27-10-05.zip (accessed 25 March, 2007).

    Google Scholar 

  • GLOBE, (2001) One-km spacing digital elevation model. Available on-line at: http://www.ngdc.noaa.gov/mgg/topo/globe.html (accessed 25 March, 2007).

    Google Scholar 

  • GTOPO30, (1996) One-km spacing digital elevation model. Available on-line at: http://edcdaac.usgs.gov/gtopo30/gtopo30.html (accessed 25 March, 2007).

    Google Scholar 

  • Levin, N., Ben-Dor, E. and Karnieli, A., (2004) Topographic information of sand dunes as extracted from shading effects using Landsat images, Remote Sensing of Environment, 90: 190–209.

    Article  Google Scholar 

  • Lindsay, J.B., (2005) The Terrain analysis system: a tool for hydro-geomorphic applications, Hydrological Processes, 19: 1123–1130.

    Article  Google Scholar 

  • Lillesand, T. and Kiefer, W., (1987) Remote Sensing and image interpretation, New York, USA: John Wiley and Sons.

    Google Scholar 

  • Miliaresis, G., (2001a), Geomorphometric mapping of Zagros Ranges at regional scale, Computers & Geosciences, 27: 775–786.

    Article  Google Scholar 

  • Miliaresis, G., (2001b), Extraction of bajadas from digital elevation models & satellite imagery, Computers & Geosciences, 27: 1157–1167.

    Article  Google Scholar 

  • Miliaresis, G., (2006) Geomorphometric mapping of Asia Minor from Globe digital elevation model, Geografiska Annaler Series-A, 88 A: 209–221.

    Article  Google Scholar 

  • Miliaresis, G. and Argialas, D., (1999) Segmentation of physiographic features from the global digital elevation model / GTOPO30, Computers & Geosciences, 25: 715–728.

    Article  Google Scholar 

  • Miliaresis, G. and Argialas, D., (2000) Extraction & delineation of alluvial fans from DEMs & Landsat TM images, Photogrammetric Engineering & Remote Sensing, 66: 1093–1101.

    Google Scholar 

  • Miliaresis, G. and Argialas, D., (2002) Quantitative representation of mountain objects extracted from the GTOPO30 DEM, Int. Journal of Remote Sensing, 23: 949–964.

    Article  Google Scholar 

  • Miliaresis, G. and Iliopoulou, P., (2004) Clustering of Zagros Ranges from the Globe DEM representation, Int. Journal of Applied Earth Observation & GeoInformation, 5: 17–28.

    Article  Google Scholar 

  • Miliaresis, G. and Kokkas, N. (2004) Segmentation and terrain modeling of extra-terrestrial chasmata, Journal of Spatial Sciences, 49: 89–99.

    Google Scholar 

  • Miliaresis, G. and Kokkas, N., (2007) Segmentation and object based classification for the extraction of building class from LIDAR DEMs, Computers & Geosciences, 33: 1076–1087.

    Article  Google Scholar 

  • Miliaresis, G., Sabatakakis, N. and Koukis, G., (2005) Terrain pattern recognition and spatial decision making for regional slope stability studies, Natural Resources Research, 14: 91–100.

    Article  Google Scholar 

  • MOLA, (2004) Mars digital elevation model, Planetary data system (PDS), NASA. Available on-line at: http://pds-geosciences.wustl.edu/missions/mgs/megdr.html (accessed 25 March, 2007).

    Google Scholar 

  • Pandey, S., (1987) Principles and applications of photogeology, New Delhi, India: John Wiley & Sons.

    Google Scholar 

  • Pike, R., (1995) Geomorphometry-process, practice and prospects, Zeitshcrift f. Geomorphologie N.F. suppl. Bd., 101: 221–238.

    Google Scholar 

  • Pike, R., (2000) Geomorphometry - diversity in quantitative surface analysis, Progress in Physical Geography, 24: 1–21.

    Google Scholar 

  • Pike, R., (2002) A bibliography of terrain modeling (Geomorphometry), the quantitative representation of topography, Supplement 4.0, Open-file report 02-465, Menlo Park, California: US Geological Survey.

    Google Scholar 

  • Pitas, I., (1993) Digital Image Processing Algorithms, London, U.K.: Prentice Hall.

    Google Scholar 

  • Shary, P., (1995) Land surface in gravity points classification by a complete system of curvatures, Mathematical Geology, 27: 373–389.

    Article  Google Scholar 

  • SRTM, (2006) Void free 3 arc sec SRTM DEM from the International Centre for Tropical Agriculture. Available on-line at: http://srtm.csi.cgiar.org/ (accessed 25 March, 2007).

    Google Scholar 

  • Summerfield, M., (1996) Global geomorphology, Essex, England: Longman Group.

    Google Scholar 

  • Summerfield, M. (ed.), (2000) Geomorphology and Global Tectonics, New York, USA: John Wiley & Sons.

    Google Scholar 

  • TAS, (2004) Terrain analysis system, a software for hydrogeomorphic applications, Available on-line at: http://www.sed.manchester.ac.uk/geography/research/tas/ (accessed 25 March, 2007).

    Google Scholar 

  • Way, D., (1978) Terrain analysis, New York, USA: McGraw-Hill.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miliaresis, G.C. (2008). Quantification of Terrain Processes. In: Zhou, Q., Lees, B., Tang, Ga. (eds) Advances in Digital Terrain Analysis. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77800-4_2

Download citation

Publish with us

Policies and ethics