Skip to main content

Organically Grown Architectures: Creating Decentralized, Autonomous Systems by Embryomorphic Engineering

  • Chapter
Organic Computing

Part of the book series: Understanding Complex Systems ((UCS))

Summary

Exploding growth growth in computational systems forces us to gradually replace rigid design and control with decentralization and autonomy. Information technologies will progress, instead, by“meta-designing” mechanisms of system self-assembly, self-regulation and evolution. Nature offers a great variety of efficient complex systems, in which numerous small elements form large-scale, adaptive patterns. The new engineering challenge is to recreate this self-organization and let it freely generate innovative designs under guidance. This article presents an original model of artificial system growth inspired by embryogenesis. A virtual organism is a lattice of cells that proliferate, migrate and self-pattern into differentiated domains. Each cell’s fate is controlled by an internal gene regulatory network network. Embryomorphic engineering emphasizes hyperdistributed architectures, and their development as a prerequisite of evolutionary design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight Jr., R. Nagpal, E. Rauch, G. Sussman, and R. Weiss. Amorphous Computing. MIT Artificial Intelligence Laboratory memo no. 1665, Aug. 1999.

    Google Scholar 

  2. W. S. Bainbridge, and M. C. Roco, eds. Managing Nano-Bio-Info-Cogno Innovations: Converging Technologies in Society. Berlin: Springer Science and Business Media, 2006.

    Google Scholar 

  3. P. Ball. The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press, 1999.

    Google Scholar 

  4. A.-L. Barabási, and R. Albert. Emergence of scaling in random networks. Science 286: 509-512, 1999.

    Article  MathSciNet  ADS  Google Scholar 

  5. Beyond the Horizon: Anticipating Future and Emerging Information Society Technologies Final Report, ERCIM, FET, IST, EU, 2006.

    Google Scholar 

  6. W. Callebaut, and D. Rasskin-Gutman, eds. Modularity. The MIT Press, 2005.

    Google Scholar 

  7. S. B. Carroll. Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. W. W. Norton & Company, 2005.

    Google Scholar 

  8. S. B. Carroll, J. K. Grenier, and S. D. Weatherbee. From DNA to Diversity, Blackwell Scientific (Malden, MA), 2001.

    Google Scholar 

  9. E. Coen. The Art of Genes. Oxford University Press, 2000.

    Google Scholar 

  10. R. Dawkins. Climbing Mount Improbable. W. W. Norton & Company, 1996.

    Google Scholar 

  11. R. Doursat. The growing canvas of biological development: Multiscale pattern generation on an expanding lattice of gene regulatory networks. InterJournal: Complex Systems 1809, 2006.

    Google Scholar 

  12. R. Doursat, and E. Bienenstock. Neocortical self-structuration as a basis for learning. 5th International Conference on Development and Learning (ICDL), Indiana University, Bloomington, Indiana, May 31-June 3, 2006.

    Google Scholar 

  13. G. M. Edelman. Topobiology: An Introduction to Molecular Emrbyology. Basic Books, 1988.

    Google Scholar 

  14. A. Gierer, and H. Meinhardt. A theory of biological pattern formation, Kybernetik 12: 30-39, 1972.

    Article  Google Scholar 

  15. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22: 437–467, 1969.

    Article  MathSciNet  Google Scholar 

  16. M. W. Kirschner, and J. C. Gerhart. The Plausibility of Life: Resolving Darwin’s Dilemma. New Haven and London: Yale University Press, 2005.

    Google Scholar 

  17. M. Komosinski, and S. Ulatowski. Framsticks: Towards a simulation of a nature-like world, creatures and evolution. In D. Floreano, J.-D. Nicoud, and F. Mondada, eds., 5th European Conference on Advances in Artificial Life (ECAL-99), pp261-265, Lausanne, Sept. 13-17, 1999.

    Google Scholar 

  18. S. Kondo, and R. Asai. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376: 765-768, 1995.

    Article  ADS  Google Scholar 

  19. R. E. Lenski, C. Ofria, R. T. Pennock, and C. Adami. The evolutionary origin of complex features. Nature 423: 139-144, 2003.

    Article  ADS  Google Scholar 

  20. H. Lipson, and J. B. Pollack. Automatic design and manufacture of robotic lifeforms. Nature 406: 974-978, 2000.

    Article  ADS  Google Scholar 

  21. H. Meinhardt. The Algorithmic Beauty of Sea Shells. Springer-Verlag, 1998.

    Google Scholar 

  22. J. F. Miller, and W. Banzhaf. Evolving the program for a cell: from French flags to Boolean circuits. In S. Kumar and P. J. Bentley, eds., On Growth, Form and Computers. Academic Press, 2003.

    Google Scholar 

  23. A. A. Minai, D. Braha, and Y. Bar-Yam. Complex engineered systems. In D. Braha, Y. Bar-Yam and A. A. Minai, eds., Complex Engineered Systems: Science Meets Technology. Springer Verlag, 2006.

    Google Scholar 

  24. E. Mjolsness, D. H. Sharp, and J. Reinitz. A connectionist model of development. Journal of Theoretical Biology, 152: 429–453, 1991.

    Article  Google Scholar 

  25. R. Nagpal. Programmable self-assembly using biologically-inspired multi-agent control. 1st Int Conf on Autonomous Agents, Bologna, Italy, July 15-19, 2002.

    Google Scholar 

  26. H. F. Nijhout. A comprehensive model for colour pattern formation in butterflies. Proc. R. Soc. Lond. B 239: 81-113, 1990.

    Article  ADS  Google Scholar 

  27. D. E. Nilsson, and S. Pelger. A pessimistic estimate of the time required for an eye to evolve. Proceedings of the Royal Society of London B 256: 53-58, 1994.

    Google Scholar 

  28. L. Nunes de Castro. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall/Crc Computer and Information Sciences, 2006.

    Google Scholar 

  29. J. E. Pearson. Complex patterns in a simple system. Science 261: 189-192, 1993.

    Article  ADS  Google Scholar 

  30. I. Salazar-Ciudad, J. Garcia-Fernández, and R. Solé. Gene networks capable of pattern formation. Journal of Theoretical Biology 205: 587–603, 2000.

    Article  Google Scholar 

  31. G. Schlosser, and G. P. Wagner, eds. Modularity in Development and Evolution. The University of Chicago Press, 2004.

    Google Scholar 

  32. P. Siero, G. Rozenberg, and A. Lindenmayer. Cell division patterns: syntactical description and implementation. Computer Graphics and Image Processing 18: 329-346, 1982.

    Article  Google Scholar 

  33. K. Stanley, B. Bryant, and R. Miikkulainen. Real-time evolution in the NERO video game. IEEE Symposium on Computational Intelligence and Games, pp182-189, Essex University, Colchester, UK, April 4-6, 2005.

    Google Scholar 

  34. H. L. Swinney, and V. I. Krinsky, eds. Waves and patterns in chemical and biological media. The MIT Press, 1991.

    Google Scholar 

  35. A. M. Turing. The chemical basis of morphogenesis. Phil. Trans. R. Soc. London B 237: 37-72, 1952.

    Article  ADS  Google Scholar 

  36. G. von Dassow, E. Meir, E. M. Munro, and G. M. Odell. The segment polarity network is a robust developmental module. Nature 406: 188–192, 2000.

    Article  ADS  Google Scholar 

  37. C. von der Malsburg, R. P. Würtz, and A. Schäfer. The Organic Computing Group, http://www.organic-computing.org, 2006.

  38. D. J. Watts, and S. H. Strogatz. Collective dynamics of “small-world” networks. Nature 393: 440-442, 1998.

    Article  ADS  Google Scholar 

  39. G. Webster, and B. Goodwin. Form and Transformation: Generative and Relational Principles in Biology. Cambridge University Press, 1996.

    Google Scholar 

  40. M. Weiser. Some computer science issues in ubiquitous computing. Communications of the ACM 36: 75-84, 1993.

    Article  Google Scholar 

  41. J. Werfel, and R. Nagpal. Extended stigmergy in collective construction. IEEE Intelligent Systems 21(2): 20-28, 2006.

    Article  Google Scholar 

  42. A. Winfree. The geometry of biological time. Springer-Verlag, 1980, 2001.

    Google Scholar 

  43. L. Wolpert. Positional information and the spatial pattern of cellular differentiation development. Journal of Theoretical Biology 25: 1–47, 1969.

    Article  Google Scholar 

  44. D. Young. A local activator-inhibitor model of vertebrate skin patterns. Mathematical Biosciences 72: 51-58, 1984.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doursat, R. (2009). Organically Grown Architectures: Creating Decentralized, Autonomous Systems by Embryomorphic Engineering. In: Organic Computing. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77657-4_8

Download citation

Publish with us

Policies and ethics