Skip to main content

Atanassov’s Intuitionistic Fuzzy Sets in Classification of Imbalanced and Overlapping Classes

  • Chapter
Intelligent Techniques and Tools for Novel System Architectures

Part of the book series: Studies in Computational Intelligence ((SCI,volume 109))

Summary

We discuss the problem of classification of imbalanced and overlapping classes. A fuzzy set approach is presented first – the classes are recognized using a fuzzy classifier. Next, we use intuitionistic fuzzy sets (A-IFSs, for short) to represent and deal with the same data. We show that the proposed intuitionistic fuzzy classifier has an inherent tendency to deal efficiently with imbalanced and overlapping data. We explore in detail the evaluation of the classifier results (especially from the point of view of recognizing the smaller class). We show on a simple example the advantages of the intuitionistic fuzzy classifier. Next, we illustrate its desirable behavior on a benchmark example (from UCI repository).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atanassov K. (1983), Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Deposed in Central Sci. Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).

    Google Scholar 

  2. Atanassov K. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96.

    Article  MATH  MathSciNet  Google Scholar 

  3. Atanassov K. (1999), Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Berlin Heidelberg New York.

    MATH  Google Scholar 

  4. Baldwin J.F. (1991), Combining Evidences for Evidential Reasoning. International Journal of Intelligent Systems, 6, 569–616.

    Article  MATH  Google Scholar 

  5. Baldwin J.F. (1992), The management of fuzzy and probabilistic uncertainties for knowledge based systems. In S.A. Shapiro (ed.), Encyclopaedia of AI, Wiley, New York (2nd edn.), 528–537.

    Google Scholar 

  6. Baldwin J.F., Martin T.P., Pilsworth B.W. (1995) FRIL – Fuzzy and Evidential Reasoning in Artificial Intelligence. Wiley, New York.

    Google Scholar 

  7. Baldwin J.F., Lawry J., Martin T.P. (1995), A Mass Assignment Theory of the Probability of Fuzzy Events. ITRC Report 229, University of Bristol, UK.

    Google Scholar 

  8. Baldwin J.F., Coyne M.R., Martin T.P. (1995), Intelligent reasoning using general knowledge to update specific information: a database approach. Journal of Intelligent Information Systems, 4, 281–304.

    Article  Google Scholar 

  9. Baldwin J.F., Lawry J., Martin T.P. (1998), The application of generalized fuzzy rules to machine learning and automated knowledge discovery. International Journal of Uncertainty, Fuzzyness and Knowledge-Based Systems, 6(5), 459–487.

    Article  MATH  MathSciNet  Google Scholar 

  10. Dubois D. and Prade H. (1983) Unfair coins and necessity measures: towards a possibilistic interpretation of histograms. Fuzzy Sets and Systems 10, 15–20.

    Article  MATH  MathSciNet  Google Scholar 

  11. Dubois D. and Prade H. (1997) The three semantics of fuzzy sets. Fuzzy Sets and Systems, 90, 141–150.

    Article  MATH  MathSciNet  Google Scholar 

  12. Fawcett T. and Provost F. (1997) Adaptive fraud detection. Data Mining and Knowledge Discovery, 3(1), 291–316.

    Article  Google Scholar 

  13. Japkowicz N. (2003) Class Imbalances: Are we Focusing on the Right Issue? ICML, Washington 2003.

    Google Scholar 

  14. Kubat M., Holte R., Matwin S. (1998) Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30, 195–215.

    Article  Google Scholar 

  15. Lewis D. and Catlett J. (1994) Heterogeneous uncertainty sampling for supervised learning. Proc. 11th Conf. on Machine Learning, 148–156.

    Google Scholar 

  16. Mladenic D. and Grobelnik M. (1999) Feature selection for unbalanced class distribution and naive bayes. 16th Int. Conf. on Machine Learning, 258–267.

    Google Scholar 

  17. Provost F. (2001) Machine learning from imbalanced data sets (extended abstract). Available at citeseer.ist.psu.edu/387449.html.

  18. Provost F., Fawcett T. and Kohavi R. (1998) The case against accuracy estimation for comparing classifiers. 5th Int. Conference on Machine Learning, San Francisco, Kaufman Morgan.

    Google Scholar 

  19. Szmidt E. and Baldwin J. (2003) New similarity measure for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs, 9(3), 60–76.

    MATH  MathSciNet  Google Scholar 

  20. Szmidt E. and Baldwin J. (2004) Entropy for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs, 10(3), 15–28.

    MathSciNet  Google Scholar 

  21. Szmidt E. and Baldwin J. (2005) Assigning the parameters for Intuitionistic Fuzzy Sets. Notes on IFSs, 11(6), 1–12.

    Google Scholar 

  22. Szmidt E. and Kacprzyk J. (2002). An intuitionistic fuzzy set base approach to intelligent data analysis (an application to medical diagnosis). In A. Abraham, L. Jain, J. Kacprzyk (Eds.): Recent Advances in Intelligent Paradigms and Applications. Springer, Berlin Heidelberg New York, 57–70.

    Google Scholar 

  23. Szmidt E. and Kacprzyk J. (2005). A new concept of similarity measure for intuitionistic fuzzy sets and its use in group decision making. In V. Torra, Y. Narukawa, S. Miyamoto (Eds.): Modelling Decisions for AI. LNAI 3558, Springer, Berlin Heidelberg New York, 2005, 272–282.

    Google Scholar 

  24. UCI machine learning repository (in world wide web) http://www.ics.uci.edu/mlearn/MLRepository.html

  25. Yager R.R. (1979) Level sets for membership evaluation of fuzzy subsets. Tech. Rep. RRY-79-14, Iona Colledge, New York.

    Google Scholar 

  26. Yamada K. (2001) Probability–possibility transformation based on evidence theory. Proc. IFSA–NAFIPS’2001, 70–75.

    Google Scholar 

  27. Zadeh L.A. (1965) Fuzzy sets. Information and Control, 8, 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  28. Zadeh L.A. (1978) Fuzzy sets as the basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szmidt, E., Kukier, M. (2008). Atanassov’s Intuitionistic Fuzzy Sets in Classification of Imbalanced and Overlapping Classes. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds) Intelligent Techniques and Tools for Novel System Architectures. Studies in Computational Intelligence, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77623-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77623-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77621-5

  • Online ISBN: 978-3-540-77623-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics