Skip to main content

Random and Site-Directed Mutagenesis of Transcriptional Regulator Proteins Implicated in Hydrocarbon Degradation Pathways

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Regulatory proteins control to a large extent the expression of metabolic pathways for hydrocarbon degradation. To do so, they have evolved specific protein domains that can interact with chemical effectors, upon which they elicit their influence on the transcriptional process. In order to understand the nature of the recognition domains and the role of specific residues in effector binding, many studies have applied mutagenesis strategies. This chapter will rehearse a few strategies used for mutagenesis of regulatory proteins and screening of effector variants, followed by step-by-step protocols on site-directed and error-prone mutagenesis, and screening of mutant libraries by flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beggah S, Vogne C, Zenaro E, van der Meer JR (2008) Mutant transcription activator isolation via green fluorescent protein based flow cytometry and cell sorting. Microb Biotechnol 1: 68–78.

    PubMed  CAS  Google Scholar 

  • Cases I, de Lorenzo V (2001) The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 20: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Cases I, de Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3: 105–118.

    Article  PubMed  CAS  Google Scholar 

  • Delgado A, Ramos J-L (1994) Genetic evidence for activation of the positive transcriptional regulator XylR, a member of the NtrC family of regulators, by effector binding. J Biol Chem 269: 8059–8062.

    PubMed  CAS  Google Scholar 

  • Devos D, Garmendia J, de Lorenzo V, Valencia A (2002) Deciphering the action of aromatic effectors on the prokaryotic enhancer-binding protein XylR: a structural model of its N-terminal domain. Environ Microbiol 4: 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61: 393–410.

    PubMed  CAS  Google Scholar 

  • Galvao TC, de Lorenzo V (2005) Adaptation of the yeast URA3 selection system to gram-negative bacteria and generation of a ΔbetCDE Pseudomonas putida strain. Appl Environ Microbiol 71: 883–892.

    Article  PubMed  CAS  Google Scholar 

  • Galvao TC, de Lorenzo V (2006) Transcriptional regulators a la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 17: 34–42.

    Article  PubMed  CAS  Google Scholar 

  • Galvao TC, Mencia M, de Lorenzo V (2007) Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol 65: 907–919.

    Article  PubMed  CAS  Google Scholar 

  • Garmendia J, Devos D, Valencia A, de Lorenzo V (2001) A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Mol Microbiol 42: 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths AD, Tawfik DS (2006) Miniaturising the laboratory in emulsion droplets. Trends Biotechnol 24: 395–402.

    Article  PubMed  CAS  Google Scholar 

  • Kohler H-PE, Schmid A, van der Maarel M (1993) Metabolism of 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HBP1: production and consumption of 2,2′, 3-trihydroxybiphenyl.  J Bacteriol 175: 1621–1628.

    PubMed  CAS  Google Scholar 

  • Lacal J, Busch A, Guazzaroni ME, Krell T, Ramos JL (2006) The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci USA 103: 8191–8196.

    Article  PubMed  CAS  Google Scholar 

  • Lonneborg R, Smirnova I, Dian C, Leonard GA, Brzezinski P (2007) In vivo and in vitro investigation of transcriptional regulation by DntR. J Mol Biol 372: 571–582.

    Article  PubMed  Google Scholar 

  • Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423: 185–189.

    Article  PubMed  CAS  Google Scholar 

  • O'Neill E, Ng LC, Sze CC, Shingler V (1998) Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR. Mol Microbiol 28: 131–141.

    Article  PubMed  Google Scholar 

  • Pavel H, Forsman M, Shingler V (1994) An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. J Bacteriol 176: 7550–7557.

    PubMed  CAS  Google Scholar 

  • Ramos JL, et al. (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69: 326–356.

    Article  PubMed  CAS  Google Scholar 

  • Salto R, Delgado A, Michan C, Marques S, Ramos JL (1998) Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like positive regulators. J Bacteriol 180: 600–604.

    PubMed  CAS  Google Scholar 

  • Skarfstad E, O’Neill E, Garmendia J, Shingler V (2000) Identification of an effector specificity subregion within the aromatic-responsive regulators DmpR and XylR by DNA shuffling. J Bacteriol 182: 3008–3016.

    Article  PubMed  CAS  Google Scholar 

  • Thaw P, et al. (2006) Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res 34: 1439–1449.

    Article  PubMed  CAS  Google Scholar 

  • Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68: 474–500.

    Article  PubMed  CAS  Google Scholar 

  • Wise AA, Kuske CR (2000) Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl Environ Microbiol 66: 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Wong TS, Roccatano D, Schwaneberg U (2007) Steering directed protein evolution: strategies to manage combinatorial complexity of mutant libraries. Environ Microbiol 9: 2645–2659.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Vogne, C., Beggah, S., van der Meer, J. (2010). Random and Site-Directed Mutagenesis of Transcriptional Regulator Proteins Implicated in Hydrocarbon Degradation Pathways. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_346

Download citation

Publish with us

Policies and ethics