Skip to main content

Oil Degraders as Pathogens

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Among the microorganisms isolated from soil and aquatic environments that are able to degrade hydrocarbons, it is not infrequent to find species that can be pathogenic for humans, animals or plants. In most cases, these microorganisms are opportunistic pathogens, this is, species that can that infect only debilitated individuals that have a previous disease or that are immunocompromised. Several opportunistic pathogens can thrive in many different habitats, being a eukaryotic host just one of them. Certain specialized pathogens, for which the main way of life is to infect a host, can degrade hydrocarbons as well. In addition to the scientific interest of this finding, the success of pathogenic strains in oil-contaminated environments poses some concerns when it comes to implement bioremediation strategies for treating oil spills or polluted sites. This chapter analyzes the possible reasons as to why many pathogenic microorganisms are efficient hydrocarbon degraders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aendekerk S, Diggle SP, Song Z, Hoiby N, Cornelis P, Williams P, Camara M (2005) The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151: 1113–1125.

    Article  PubMed  CAS  Google Scholar 

  • Aendekerk S, Ghysels B, Cornelis P, Baysse C (2002) Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148: 2371–2381.

    PubMed  CAS  Google Scholar 

  • Alisi C, Lasinio GJ, Dalmastri C, Sprocati A, Tabacchioni S, Bevivino A, Chiarini L (2005) Metabolic profiling of Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia isolates from maize rhizosphere. Microb Ecol 50: 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Martínez JL (2000) Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44: 3079–3086.

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Rojo F, Martínez JL (1999) Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol 1: 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin A, Sokol PA, Parkhill J, Mahenthiralingam E (2004) The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infect Immun 72: 1537–1547.

    Article  PubMed  CAS  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89: 158–168.

    Article  PubMed  CAS  Google Scholar 

  • Belhaj A, Desnoues N, Elmerich C (2002) Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes. Res Microbiol 153: 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57: 1210–1223.

    Article  PubMed  CAS  Google Scholar 

  • Cabrol S, Olliver A, Pier GB, Andremont A, Ruimy R (2003) Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa. J Bacteriol 185: 7222–7230.

    Article  PubMed  CAS  Google Scholar 

  • Caiazza NC, Shanks RM, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187: 7351–7361.

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351–368.

    Article  CAS  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14: 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544.

    Article  PubMed  CAS  Google Scholar 

  • D’Argenio DA (2006) The pathogenic lifestyle of Pseudomonas aeruginosa in model systems of virulence. In Pseudomonas, Vol. 1. JL Ramos (ed.). Dordrecht, The Netherlands: Kluwer Academic, pp. 477–503.

    Google Scholar 

  • Eberl L, Tümmler B (2004) Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int J Med Microbiol 294: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Foght JM, Westlake DW, Johnson WM, Ridgway HF (1996) Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 142: 2333–2340.

    Article  PubMed  CAS  Google Scholar 

  • Funhoff EG, Bauer U, Garcia-Rubio I, Witholt B, van Beilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188: 5220–5227.

    Article  PubMed  CAS  Google Scholar 

  • Grifoll M, Selifonov SA, Chapman PJ (1995) Transformation of substituted fluorenes and fluorene analogs by Pseudomonas sp. Strain F274. Appl Environ Microbiol 61: 3490–3493.

    PubMed  CAS  Google Scholar 

  • Guglierame P, Pasca MR, De Rossi E, Buroni S, Arrigo P, Manina G, Riccardi G (2006) Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol 6: 66.

    Article  PubMed  Google Scholar 

  • Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Hearn EM, Dennis JJ, Gray MR, Foght JM (2003) Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 185: 6233–6240.

    Article  PubMed  CAS  Google Scholar 

  • Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock RE, Speert DP (2002) Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196: 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biosurfactants in hydrocarbon utilization. Biodegradation 1: 107–119.

    Article  PubMed  CAS  Google Scholar 

  • Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA 100: 13591–13596.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70: 1777–1786.

    Article  PubMed  CAS  Google Scholar 

  • Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Kieboom J, de Bont J (2001) Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance. Microbiology 147: 43–51.

    PubMed  CAS  Google Scholar 

  • Kieboom J, Dennis JJ, de Bont JA, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273: 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Kiewitz C, Tümmler B (2000) Sequence diversity of Pseudomonas aeruginosa: impact on population structure and genome evolution. J Bacteriol 182: 3125–3135.

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Engesser KH, Cerniglia CE (2005) Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria. Microb Ecol 50: 110–119.

    Article  PubMed  CAS  Google Scholar 

  • Kohler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182: 5990–5996.

    Article  PubMed  CAS  Google Scholar 

  • Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102: 184–192.

    Article  PubMed  CAS  Google Scholar 

  • Lee NR, Hwang MO, Jung GH, Kim YS, Min KH (1996) Physical structure and expression of alkBA encoding alkane hydroxylase and rubredoxin reductase from Pseudomonas maltophilia. Biochem Biophys Res Commun 218: 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Li XZ, Zhang L, Poole K (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180: 2987–2991.

    PubMed  CAS  Google Scholar 

  • López Z, Vila J, Minguillon C, Grifoll M (2006) Metabolism of fluoranthene by Mycobacterium sp. strain AP1. Appl Microbiol Biotechnol 70: 747–756.

    Article  PubMed  Google Scholar 

  • López Z, Vila J, Ortega-Calvo JJ, Grifoll M (2008) Simultaneous biodegradation of creosote-polycyclic aromatic hydrocarbons by a pyrene-degrading Mycobacterium. Appl Microbiol Biotechnol 78: 165–172.

    Article  PubMed  Google Scholar 

  • Lubelski J, Konings WN, Driessen AJ (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71: 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Maggiorani Valecillos A, Rodríguez Palenzuela P, López-Solanilla E (2006) The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis. Mol Plant Microbe Interact 19: 607–613.

    Article  PubMed  Google Scholar 

  • Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3: 144–156.

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl Environ Microbiol 69: 3085–3092.

    Article  PubMed  CAS  Google Scholar 

  • Marín MM, Smits TH, van Beilen JB, Rojo F (2001) The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol 183: 4202–4209.

    Article  PubMed  Google Scholar 

  • Marín MM, Yuste L, Rojo F (2003) Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J Bacteriol 185: 3232–3237.

    Article  PubMed  Google Scholar 

  • Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105: 3100–3105.

    Article  PubMed  CAS  Google Scholar 

  • McClay K, Fox BG, Steffan RJ (1996) Chloroform mineralization by toluene-oxidizing bacteria. Appl Environ Microbiol 62: 2716–2722.

    PubMed  CAS  Google Scholar 

  • McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9: 165–176.

    Article  PubMed  CAS  Google Scholar 

  • Morales G, Wiehlmann L, Gudowius P, van Delden C, Tümmler B, Martínez JL, Rojo F (2004) Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping. J Bacteriol 186: 4228–4237.

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Kimura N, Mima T, Mizushima T, Tsuchiya T (2001) Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J Gen Appl Microbiol 47: 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60: 151–166.

    PubMed  CAS  Google Scholar 

  • Niederweis M (2008) Nutrient acquisition by mycobacteria. Microbiology 154: 679–692.

    Article  PubMed  CAS  Google Scholar 

  • Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68: 4502–4508.

    Article  PubMed  CAS  Google Scholar 

  • Palumbo JD, Kado CI, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180: 3107–3113.

    PubMed  CAS  Google Scholar 

  • Pirnay JP, De Vos D, Mossialos D, Vanderkelen A, Cornelis P, Zizi M (2002) Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environ Microbiol 4: 872–882.

    Article  PubMed  CAS  Google Scholar 

  • Pirnay JP, Matthijs S, Colak H, Chablain P, Bilocq F, Van Eldere J, De Vos D, Zizi M, Triest L, Cornelis P (2005) Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ Microbiol 7: 969–980.

    Article  PubMed  CAS  Google Scholar 

  • Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177: 3911–3916.

    PubMed  CAS  Google Scholar 

  • Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183: 3967–3973.

    Article  PubMed  CAS  Google Scholar 

  • Römling U, Schmidt KD, Tümmler B (1997) Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 271: 386–404.

    Article  PubMed  Google Scholar 

  • Römling U, Wingender J, Muller H, Tümmler B (1994) A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60: 1734–1738.

    PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13: 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Smits TH, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184: 1733–1742.

    Article  PubMed  CAS  Google Scholar 

  • Smits THM, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1: 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Smits TH, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 84: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Heuner K, Buchrieser C, Albert-Weissenberger C, Glockner G (2007) Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297: 577–587.

    Article  PubMed  CAS  Google Scholar 

  • Stoitsova SO, Braun Y, Ullrich MS, Weingart H (2008) Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol 74: 3387–3393.

    Article  PubMed  CAS  Google Scholar 

  • Teran W, Krell T, Ramos JL, Gallegos MT (2006) Effector-repressor interactions, binding of a single effector molecule to the operator-bound TtgR homodimer mediates derepression. J Biol Chem 281: 7102–7109.

    Article  PubMed  CAS  Google Scholar 

  • Tümmler B (2006) Clonal variations in Pseudomonas aeruginosa. In Pseudomonas, vol. 4. JL Ramos and RC Levesque (eds.). Heidelberg: Springer, pp. 35–68.

    Chapter  Google Scholar 

  • Vallenet D, Nordmann P, Barbe V, Poirel L, Mangenot S, Bataille E, Dossat C, Gas S, Kreimeyer A, Lenoble P, Oztas S, Poulain J, Segurens B, Robert C, Abergel C, Claverie JM, Raoult D, Medigue C, Weissenbach J, Cruveiller S (2008) Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS ONE 3: e1805.

    Article  PubMed  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58: 427–440.

    Article  CAS  Google Scholar 

  • van Beilen JB, Smits TH, Whyte LG, Schorcht S, Rothlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002) Alkane hydroxylase homologues in gram-positive strains. Environ Microbiol 4: 676–682.

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Veenhoff L, Witholt B (1998) Alkane hydroxylase systems in Pseudomonas aeruginosa strains able to grow on n-octane. In New Frontiers in Screening for Microbial Biocatalysts. K Kieslich, CP van der Beek, JAM de Bont, and WJJ van den Tweel (eds.). Amsterdam: Elsevier, pp. 211–215.

    Chapter  Google Scholar 

  • van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67: 503–549.

    Article  PubMed  CAS  Google Scholar 

  • Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1: 79–92.

    Article  PubMed  CAS  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76: 1209–1221.

    Article  PubMed  CAS  Google Scholar 

  • Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Kohler T, van Delden C, Weinel C, Slickers P, Tümmler B (2007) Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 104: 8101–8106.

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100: 8484–8489.

    Article  PubMed  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Yuste L, Corbella ME, Turiégano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32: 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Zulianello L, Canard C, Kohler T, Caille D, Lacroix JS, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74: 3134–3147.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work on author’s lab was funded by grants BFU2006-00767/BMC and CSD2007-00005.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rojo, F., Martínez, J.L. (2010). Oil Degraders as Pathogens. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_250

Download citation

Publish with us

Policies and ethics