Skip to main content

Sulfate-Reducing and Methanogenic Hydrocarbon-Oxidizing Microbial Communities in the Marine Environment

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Hydrocarbons that originate in the marine subsurface provide carbon and energy sources for extensive and diverse microbial communities. This chapter provides an overview of cultured strains and species, and uncultured 16S rRNA phylotypes from contrasting hydrocarbon-rich ecosystems, with emphasis on anaerobic, sulfate-reducing and methanogenic microbial populations. Cultivation efforts have especially increased the known diversity of cultured, hydrocarbon-oxidizing sulfate-reducing bacteria. Cultivation-based studies of their substrate spectra, habitat preferences and ecophysiology are essential for understanding the function of hydrocarbon-oxidizing microbial communities in their specific environment. Further, this chapter highlights contrasting microbial communities sustained by biogenic or abiogenic hydrocarbons. Biogenic petroleum hydrocarbons are produced when buried organic matter of photosynthetic origin undergoes thermal maturation; characteristic examples are the hydrocarbon seeps in the Gulf of Mexico and the petroleum-rich, thickly sedimented Guaymas Basin vent field in the Gulf of California. Abiogenically produced organic matter can be produced at hydrothermal vent sites dominated by serpentinization reactions in the deep subsurface, such as the Lost City vent field. The distinct microbial communities that grow at these hydrothermal systems reflect the spectrum of carbon substrates and electron donors in the vent fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156: 5–14.

    CAS  Google Scholar 

  • Aeckersberg F, Rainey F, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170: 361–369.

    PubMed  CAS  Google Scholar 

  • Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431: 291–294.

    PubMed  CAS  Google Scholar 

  • Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol 219: 131–155.

    Google Scholar 

  • Bach W, Edwards KJ (2003) Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67: 3871–3887.

    CAS  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7: 1175–1185.

    PubMed  CAS  Google Scholar 

  • Bastin E (1926) Microorganisms in oilfields. Science 63: 21–24.

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Farrington JW, Jannasch HW (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org Geochem 12: 547–558.

    CAS  Google Scholar 

  • Beeder J, Torsvik T, Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164: 331–336.

    PubMed  CAS  Google Scholar 

  • Biddle JF, Lipp JS, Lever M, Lloyd K, Sørensen K, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs K-U (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103: 3846–3851.

    PubMed  CAS  Google Scholar 

  • Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205: 291–310.

    Google Scholar 

  • Brazelton WJ, Schrenck MO, Kelley DS, Baross JA (2006) Methane and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72: 6257–6270.

    PubMed  CAS  Google Scholar 

  • Calvert SE (1966) Origin of diatom-rich varved sediments from the Gulf of California. J Geol 76: 546–565.

    Google Scholar 

  • Campbell B, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4: 458–468.

    PubMed  CAS  Google Scholar 

  • Cravo-Laureau C, Labat C, Joulian C, Matheron R, Hirschler-Réa A (2007) Desulfatiferula oiefinivorans gen.nov, sp. nov. a long-chain n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 57: 2699–2702.

    PubMed  CAS  Google Scholar 

  • Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Réa A (2004a) Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54: 77–83.

    PubMed  CAS  Google Scholar 

  • Cravo-Laureau C, Matheron R, Joulian C, Cayol J-L, Hirschler-Réa A (2004b) Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulfate-reducing bacterium, and emendated description of the genus Desulfatibacillum. Int J Syst Evol Microbiol 54: 1639–1642.

    PubMed  CAS  Google Scholar 

  • Dahle H, Garshol F, Madsen M, Birkeland N-K (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek 93: 37–49.

    PubMed  Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K, Stahl DA (1993) Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales.” Syst Appl Microbiol 16: 191–200.

    Google Scholar 

  • Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56: 2737–2742.

    PubMed  CAS  Google Scholar 

  • Delacour A, Früh-Green GL, Bernasconi SM, Schaeffer P, Kelley DS (2008) Carbon geochemistry of serpentinites in the Lost City hydrothermal system (30(N, MAR). Geochim Cosmochim Acta 72: 3681–3702.

    CAS  Google Scholar 

  • Dhillon A, Lever M, Lloyd K, Albert DB, Sogin ML, Teske A (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes (mcrA) in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71: 4592–4601.

    PubMed  CAS  Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69: 2765–2772.

    PubMed  CAS  Google Scholar 

  • D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs K-U, Holm N, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guèrin G, House C, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN,Acosta JLS (2004) Distributions of metabolic activities in deep subseafloor sediments. Science 306: 2216–2212.

    PubMed  Google Scholar 

  • Didyk BM, Simoneit BR (1989) Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature 342: 65–69.

    CAS  Google Scholar 

  • Dojka M, Harris JK, Pace NR (2000) Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Environ Microbiol 66: 1617–1621.

    PubMed  CAS  Google Scholar 

  • Dojka M, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64: 3868–3877.

    Google Scholar 

  • Edgcomb V, Kysela D, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin, a hydrothermal vent environment. Proc Natl Acad Sci USA 99: 7658–7662.

    PubMed  CAS  Google Scholar 

  • Elsgaard L, Isaksen MF, Jørgensen BB, Alayse A-M, Jannasch HW (1994) Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: Influence of temperature and substrates. Geochim Cosmochim Acta 58: 3335–3343.

    CAS  Google Scholar 

  • Früh-Green GL, Kelley DS, Bernasconi SM, Karson JA, Ludwig KA, Butterfield DA, Boschi C, Proskurowski G (2003) 30,000 years of hydrothermal activity at the Lost City vent field. Science 301: 495–498.

    PubMed  Google Scholar 

  • Fukui M, Teske A, Assmus B, Muyzer G, Widdel F (1999) Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (Genus Desulfonema). Arch Microbial 172: 193–203.

    Google Scholar 

  • Galushko A, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1: 415–420.

    PubMed  CAS  Google Scholar 

  • Gieg L, Suflita JM (2002) Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol 36: 3755–3762.

    PubMed  CAS  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74: 3022–3029.

    PubMed  CAS  Google Scholar 

  • Goetz FE, Jannasch HW (1993) Aromatic hydrocarbon-degrading bacteria in the petroleum-rich sediments of the Guaymas Basin hydrothermal vent site: preference for aromatic carboxylic acids. Geomicrobiol J 11: 1–18.

    CAS  Google Scholar 

  • Grassia GS, McLean KM, Glenat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21: 47–58.

    CAS  Google Scholar 

  • Greene AD, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47: 505–509.

    PubMed  CAS  Google Scholar 

  • Guezennec JG, Dussauze J, Bian M, Rocchicioli F, Ringelberg D, Hedrick DB, White DC (1996) Bacterial community structure from Guaymas Basin, Gulf of California, as determined by analysis of phospholipid ester-linked fatty acids. J Mar Biotechnol 4: 165–175.

    CAS  Google Scholar 

  • Gundersen JK, Jørgensen BB, Larsen E, Jannasch HW (1992) Mats of giant sulfur bacteria on deep-sea sediments due to fluctuation hydrothermal flow. Nature 360: 454–455.

    Google Scholar 

  • Hallam SJN, Putnam C, Preston M, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hydothesis with environmental genomics. Science 305: 1457–1462.

    PubMed  CAS  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, RosselloMora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65: 999–1004.

    PubMed  CAS  Google Scholar 

  • Hinrichs K-U, Hayes JM, Bach W, Spivack AJ, Hmelo LR, Holm NG, Johnson CG, Sylva SP (2006) Biological formation of ethane and propane in the deep marine subsurface. Proc Natl Acad Sci USA 103: 14684–14689.

    PubMed  CAS  Google Scholar 

  • Holm NG, Charlou JL (2001) Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system. Earth Planet Sci Lett 191: 1–8.

    CAS  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level diversity in a Yellowstone hot spring. J Bacteriol 180: 366–376.

    PubMed  CAS  Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever MA, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt SL, Jørgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103: 2815–2820.

    PubMed  CAS  Google Scholar 

  • Ivarsson M, Holm NG (2008) Microbial colonization of various habitable niches during alteration of oceanic crust. In Links Between Geological Processes, Microbial Activities & Evolution of Life. Y Dilek, H Furnes, and K Muehlenbachs (eds.). Vol. 4, Series: Modern Approaches in Solid Earth Sciences. Berlin: Springer, pp. 69–111.

    Google Scholar 

  • Jannasch HW, Nelson DC, Wirsen CO (1989) Massive natural occurrence of unusually large bacteria (Beggiatoa spp.) at a hydrothermal deep-sea vent site. Nature 342: 834–836.

    CAS  Google Scholar 

  • Jeanthon C, L’Haridon S, Pradel N, Prieur D (1999) Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int J Syst Bacteriol 49: 591–594.

    PubMed  CAS  Google Scholar 

  • Jeanthon C, Reysenbach AL, L’Haridon S, Gambacorta A, Pace NR, Glénat P, Prieur D (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164: 91–97.

    PubMed  CAS  Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs Nature 451: 176–180.

    PubMed  CAS  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136: 254–261.

    CAS  Google Scholar 

  • Jones WJ, Stugard CE, Jannasch HW (1989) Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151: 314–319.

    CAS  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine – microbial life in the deep-sea bed. Nat Rev Microbiol 5: 770–781.

    PubMed  Google Scholar 

  • Jørgensen BB, Isaksen MF, Jannasch HW (1992) Bacterial sulfate reduction above 100°C in deep-sea hydrothermal vent systems. Science 258: 1756–1757.

    PubMed  Google Scholar 

  • Jørgensen BB, Zawacki LX, Jannasch HW (1990) Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vents (Gulf of California). Deep-Sea Res I 37: 695–710.

    Google Scholar 

  • Kallmeyer J, Boetius A (2004) Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl Environ Microbiol 70: 1231–1233.

    PubMed  CAS  Google Scholar 

  • Kallmeyer J, Ferdelman TG, Jansen K-H, Jørgensen BB (2003) A high pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples. J Microbiol Methods 55: 165–172.

    PubMed  CAS  Google Scholar 

  • Kawka OE, Simoneit BR (1987) Survey of hydrothermally generated petroleums from the Guaymas Basin spreading center. Org Geochem 11: 311–328.

    CAS  Google Scholar 

  • Kelley DS, Baross JA, Delaney RJ (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci 30: 385–491.

    CAS  Google Scholar 

  • Kelley DS, Karson JA, Blackmann DK, Früh-Green GL, Butterfield DA, Lilley MD, Olsen EJ, Schrenck MO, Roe KK, Lebon GT, Rivizzigno P, the AT3-60 Shipboard Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412: 145–149.

    PubMed  CAS  Google Scholar 

  • Kelley DS, et al. (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307: 1428–1434.

    PubMed  CAS  Google Scholar 

  • Klepac V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF (2004) High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ Microbiol 6: 386–398.

    Google Scholar 

  • Klepac-Ceraj V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF (2004) High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ Microbiol 6: 686–698.

    Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a New Type of Marine sulfate-reducing bacterium. Appl Environ Microbiol 69: 760–768.

    PubMed  CAS  Google Scholar 

  • Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449: 898–901.

    PubMed  CAS  Google Scholar 

  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, OR). Geomicrobiol J 20: 269–294.

    CAS  Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71: 467–479.

    PubMed  CAS  Google Scholar 

  • Küver J, Könneke M, Galushko A, Drzyzga O (2001) Reclassification of Desulfobacterium phenolicum and Desulfobacula phenolica comb. nov., and description of strain SaxT as Desulfotignum balticum gen. nov. sp. nov. Int J Syst Evol Microbiol 51: 171–177.

    Google Scholar 

  • Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH (2001) Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl Environ Microbiol 67: 5143–5153.

    PubMed  CAS  Google Scholar 

  • Lapham LL, Chanton JP, Martens CS, Sleeper K, Woolsey JR (2008) Microbial activity in surficial sediments overlying acoustic wipeout zones at a Gulf of Mexico cold seep. Geochem Geophys Geosyst 9: Q06001, doi:1029/2008GC001944.

    Google Scholar 

  • L’Haridon S, Reysenbach A-L, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377: 223–224.

    Google Scholar 

  • Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1 archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72: 7218–7230.

    PubMed  CAS  Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73: 3348–3362.

    PubMed  Google Scholar 

  • Magot M, Ollivier B, Patel BC (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77: 103–116.

    PubMed  CAS  Google Scholar 

  • Martens CS (1990) Generation of short chain organic acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. Appl Geochem 5: 71–76.

    CAS  Google Scholar 

  • McCollom TM (2007) Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology 7: 933–950.

    PubMed  CAS  Google Scholar 

  • McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29: 153–166.

    PubMed  CAS  Google Scholar 

  • McCollom TM, Seewald JS (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet Sci Lett 243: 74–84.

    CAS  Google Scholar 

  • McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107: 382–401.

    PubMed  CAS  Google Scholar 

  • McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61: 4375–4391.

    PubMed  CAS  Google Scholar 

  • Mills HJ, Hodges C, Wilson K, MacDonald IR, Sobecky PA (2003) Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 46: 39–52.

    PubMed  CAS  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70: 5447–5458.

    PubMed  CAS  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71: 3235–3247.

    PubMed  CAS  Google Scholar 

  • Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10: 162–173.

    PubMed  CAS  Google Scholar 

  • Müller JA, Galushko AS, Kappler A, Schink BJ (2001) Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in Desulfobacterium cetonicum. J Bacteriol 183: 752–757.

    PubMed  Google Scholar 

  • Musat F, Widdel F (2008) Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ Microbiol 10: 10–19.

    PubMed  CAS  Google Scholar 

  • Muyzer G, van der Kraan G (2008) Bacteria from hydrocarbon seep areas growing on short-chain alkanes. Trends Microbiol 16: 138–141.

    PubMed  CAS  Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large autotrophic Beggiatoa abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55: 2909–2917.

    PubMed  CAS  Google Scholar 

  • Niemann H, Lösekann T, De Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: 854–858.

    PubMed  CAS  Google Scholar 

  • Ollivier B, Cayol JL, Patel BK, Magot M, Fardeau ML, Garcia JL (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147: 51–56.

    PubMed  CAS  Google Scholar 

  • Ommedal H, Torsvik T (2007) Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column. Int J Syst Evol Microbiol 57: 2865–2869.

    PubMed  CAS  Google Scholar 

  • Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis, and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69: 4267–4281.

    CAS  Google Scholar 

  • Orphan VJ, Hinrichs K-U, Ussler WIII, Paull CK, Taylor LT, Sylva SP, Hayes JM, DeLong EF (2001a) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67: 1922–1934.

    PubMed  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001b). Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293: 484–487.

    PubMed  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99: 7663–7668.

    PubMed  CAS  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, DeLong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum deposits. Appl Environ Microbiol 66: 7000–7111.

    Google Scholar 

  • Parkes JR (1999) Cracking anaerobic bacteria. Nature 401: 217–218.

    PubMed  CAS  Google Scholar 

  • Parkes JR, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8: 11–28.

    Google Scholar 

  • Pearson A, Seewald JS, Eglinton TI (2005) Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin. Geochim Cosmochim Acta 69: 5477–5486.

    CAS  Google Scholar 

  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA 105: 7052–7057.

    PubMed  CAS  Google Scholar 

  • Phelps TCD, Kerkhof LJ, Young LY (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol 27: 269–279.

    CAS  Google Scholar 

  • Proskurowski G, Lilley MD, Kelley DS, Olson EJ (2006) Low temperature volatile production at the Lost City hydrothermal field, evidence from a hydrogen stable isotope geothermometer. Chem Geol 229: 331.

    CAS  Google Scholar 

  • Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319: 604–607.

    PubMed  CAS  Google Scholar 

  • Rabus R, Fukui M, Wilkes H, Widdel F (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol 62: 3605–3613.

    PubMed  CAS  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BKC, Prensier G, Egan A, Garcia JL, Ollivier B (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45: 308–314.

    PubMed  CAS  Google Scholar 

  • Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45: 85–89.

    Google Scholar 

  • Roussel EG, Cambon Bonavita M-A, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-seafloor biosphere. Science 320: 1046.

    PubMed  CAS  Google Scholar 

  • Rozanova EP, Pivovarova TA (1988) Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Microbiology 57: 102–106.

    Google Scholar 

  • Rozanova EP, Turova TP, Kolganova TV, Lysenko AM, Mitiushina LL, Iusupov SK, Beliaev SS (2001) Desulfacinum subterraneum sp.nov., a new thermophilic sulfate-reducing bacterium isolated from a high temperature oil field. Mikrobiologiia 70: 536–542.

    PubMed  CAS  Google Scholar 

  • Rüter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458.

    Google Scholar 

  • Santelli CA, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin MS, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453: 653–657.

    PubMed  CAS  Google Scholar 

  • Schrader H (1982) Diatom biostratigraphy and laminated diatomaceous sediments from the Gulf of California, Deep Sea Drilling Project Leg 64. Initial Reports of the Deep Sea Drilling Project, 64. Washington, DC: U.S. Government Printing Office, pp. 973–981.

    Google Scholar 

  • Schrenck MO, Kelley DS, Bolton SA, Baross JA (2004) Low archaeal diversity linked to subseafloor geochemical processes at the Lost City hydrothermal field, Mid-Atlantic Ridge. Environ Microbiol 6: 1086–1095.

    Google Scholar 

  • Shock EL (1990) Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig Life Evol Biosph 20: 331–367.

    CAS  Google Scholar 

  • Shock EL, Schulte MD (1998) Organic synthesis during fluid mixing in hydro-thermal systems. J Geophys Res 103: 28513–28527.

    CAS  Google Scholar 

  • So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65: 2969–2976.

    PubMed  CAS  Google Scholar 

  • Stetter KO, et al. (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743–745.

    Google Scholar 

  • Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O, Magot M (1996) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42: 259–266.

    PubMed  CAS  Google Scholar 

  • Teske A, Dhillon A, Sogin ML (2003)Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation. Biol Bull 204: 186–191.

    PubMed  CAS  Google Scholar 

  • Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity in hydrothermal sediments in the guaymas basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68: 1994–2007.

    PubMed  CAS  Google Scholar 

  • Von Damm K (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions. SE Humphris, RA Zierenberg, LS Mullineaux, and RE Thomson (eds.). Washington, DC: American Geophysical Union, pp. 222–247.

    Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62: 1623–1629.

    PubMed  CAS  Google Scholar 

  • Watanabe K, Kodama Y, Hamamura N, Kaku N (2002) Diversity, abundance, and activity of archaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. Appl Environ Microbiol 68: 3899–3907.

    PubMed  CAS  Google Scholar 

  • Watanabe K, Watanabe K, Kodama Y, Syutsubo K, Harayama S (2000) Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl Environ Microbiol 66: 4803–4809.

    PubMed  CAS  Google Scholar 

  • Weber A, Jørgensen BB (2002) Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep-Sea Res I 149: 827–841.

    Google Scholar 

  • Webster G, Parkes RJ, Fry JC, Weigthman AJ (2004) Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microbiol 70: 5708–5713.

    PubMed  CAS  Google Scholar 

  • Welhan JA (1988) Origins of methane in hydrothermal systems. Chem Geol 71: 183–198.

    CAS  Google Scholar 

  • Wellsbury P, Goodman K, Barth T, Cragg BA, Barnes SP, Parkes RJ (1997) Deep bacterial biosphere fuelled by increasing organic matter availability during burial and reheating. Nature 388: 573–576.

    CAS  Google Scholar 

  • Whelan JK, Simoneit BRT, Tarafa ME (1988) C1–C8 hydrocarbons in sediments from Guaymas Basin, Gulf of California – comparison to Peru Margin, Japan Trench, and California Borderlands. Org Geochem 12: 171–194.

    CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn. A Balows, HG Trüper, M Dworkin, W Harder, and K-H Schleifer (eds.). New York: Springer, pp. 3352–3378.

    Google Scholar 

  • Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In Sulphate-Reducing Bacteria: Environmental and Engineered Systems. LL Barton and WA Hamilton (eds.). Cambridge: Cambridge University Press, pp. 265–304.

    Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12: 259–276.

    PubMed  CAS  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266–269.

    PubMed  CAS  Google Scholar 

  • Zierenberg RA, Adams MWW, Arp AJ (2000) Life in extreme environments: hydrothermal vents. Proc Natl Acad Sci USA 97: 12961–12962.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Andreas Teske was supported by NSF (Bio Oce 0647633), and by the Gulf of Mexico Gas Hydrate Consortium.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Teske, A. (2010). Sulfate-Reducing and Methanogenic Hydrocarbon-Oxidizing Microbial Communities in the Marine Environment. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_160

Download citation

Publish with us

Policies and ethics