Skip to main content

Facultative Methane Oxidizers

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Most aerobic methanotrophic bacteria grow only on C1 compounds. However, facultative methanotrophs are able to use either methane or some multi-carbon compounds as their sole carbon and energy source. The existence of such bacteria was a controversial topic until facultative methanotrophy was conclusively demonstrated in members of the genus Methylocella, which are widely distributed in acidic and neutral terrestrial environments. Methylocella species are morphologically and genetically unlike obligate methanotrophs in several ways. They lack a particulate, membrane-bound methane monooxygenase that is found in all other methanotrophs and instead use only a soluble form of this enzyme for methane oxidation. The latter is repressed if an alternative multicarbon growth substrate is present but is not affected by copper ion availability. The metabolic flexibility of facultative methanotrophs offers new biotechnological potential and calls for revising our outlook on methane cycling in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GAF domains:

(found in cGMP-phosphodiesterases adenylyl cyclases and FhlA, where FhlA is formate hydrogen lyase transcriptional activator) are small-molecule-binding domains present in signal transduction proteins in organisms from all phyla

PLFA:

phospholipid fatty acid

pMMO:

particulate methane monooxygenase

RT-PCR:

reverse transcription polymerase chain reaction

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

sMMO:

soluble methane monooxygenase

TCA cycle:

tricarboxylic acid cycle

References

  • Bürgmann H, Widmer F, von Sigler W, Zeyer J (2004) New molecular screening tools for the analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70: 240–247.

    Article  PubMed  Google Scholar 

  • Chen Y, Crombie A, Rahaman Md. T, Dedysh S, Alam M, Liesack W, Saw JH, Dunfield PF, Murrell JC. Genome analysis of the first validated facultative methanotroph Methylocella silvestris BL2. Abstract presented at the 12th International Society for Microbial Ecology Conference, Cairns, Australia, August 17–22, 2008.

    Google Scholar 

  • Chen Y, Dumont MG, Cebron A, Murrell JC (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ Microbiol 9: 2855–2869.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Paverse N, Murrell JC (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 10: 446–459.

    Article  PubMed  CAS  Google Scholar 

  • Colby J, Stirling DI, Dalton H (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J 165: 395–402.

    PubMed  CAS  Google Scholar 

  • Csaki R, Bodrossy L, Klem J, Murrell JC, Kovacs KL (2003) Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. Microbiology 149: 1785–1795.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004b) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic peatlands of tundra. Int J Syst Evol Microbiol 54: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Derakshani M, Liesack W (2001) Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67: 4850–4857.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Dunfield PF, Trotsenko YA (2004a) Methane utilization by Methylobacterium species: new evidence but still no proof for an old controversy. Int J Syst Evol Microbiol 54: 1919–1920.

    Article  PubMed  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005a) Methylocella species are facultatively methanotrophic. J Bacteriol 187: 4665–4670.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Abing AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50: 955–969.

    PubMed  CAS  Google Scholar 

  • Dedysh SN, Panikov NS, Liesack W, Großkopf R, Zhou J, Tiedje JM (1998) Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282: 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Smirnova KV, Khmelenina VN, Suzina NE, Liesack W, Trotsenko YA (2005b) Methylotrophic autotrophy in Beijerinckia mobilis. J Bacteriol 187: 3884–3888.

    Article  PubMed  CAS  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov. a novel methanotrophic bacterium isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53: 1231–1239.

    Article  PubMed  CAS  Google Scholar 

  • Green PN, Bousfield IJ (1983) Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 33: 875–877.

    Article  Google Scholar 

  • Kelly DP, Anthony C, Murrell JC (2005) Insights into the obligate methanotroph Methylococcus capsulatus. Trends Microbiol 13: 195–198.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C (2005) Genus I Beijerinckia. In Bergeys Manual Systematic Bacteriology, 2nd edn. vol 2. The Proteobacteria Part C The Alpha-, Beta-, Delta- and Epsilonproteobacteria. DJ Brenner, NR Krieg, and JR Staley (eds.). New York: Springer, pp. 423–432.

    Chapter  Google Scholar 

  • Lau E, Ahmad A, Steudler PA, Cavanaugh CM (2007) Molecular characterization of methanotroph communities in forest soils that consume atmospheric methane. FEMS Microbiol Ecol 60: 490–500.

    Article  PubMed  CAS  Google Scholar 

  • Miller DN, Yavitt JB, Madsen EL, Ghiorse WC (2004) Methanotrophic activity, abundance, and diversity in forested swamp pools: spatiotemporal dynamics and influences on methane fluxes. Geomicrobiol J 21: 257–271.

    Article  CAS  Google Scholar 

  • Morris SA, Radajewski S, Willison TW, Murrell JC (2002) Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68: 1446–1453.

    Article  PubMed  CAS  Google Scholar 

  • Murrell JC, McDonald IR, Gilbert B (2000) Regulation of methane monooxygenase genes by copper ions. Trends Microbiol 8: 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Patt TE, Cole GC, Bland J, Hanson RS (1974) Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol 120: 955–964.

    PubMed  CAS  Google Scholar 

  • Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC (2002) Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148: 2331–2342.

    PubMed  CAS  Google Scholar 

  • Shishkina VN, Trotsenko YA (1982) Multiple enzymic lesions in obligate methanotrophic bacteria. FEMS Microbiol Lett 13: 237–242.

    Article  CAS  Google Scholar 

  • Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidising organisms: studies in batch and continuous cultures. Biotechnol Lett 5: 487–492.

    Article  CAS  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58: 682–692.

    Article  PubMed  CAS  Google Scholar 

  • Theisen AR, Murrell JC (2005) Facultative methanotrophs revisited. J Bacteriol 187: 4303–4305.

    Article  PubMed  CAS  Google Scholar 

  • Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, et al. (2004) Genomic insights into methanotrophy: The complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biology 2: E303.

    Article  PubMed  Google Scholar 

  • West AE, Schmidt SK (1999) Acetate stimulates atmospheric CH4 oxidation by an alpine tundra soil. Soil Biol Biochem 31: 1649–1655.

    Article  CAS  Google Scholar 

  • Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28: 335–352.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Dedysh, S.N., Dunfield, P.F. (2010). Facultative Methane Oxidizers. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_144

Download citation

Publish with us

Policies and ethics