Skip to main content

Abstract:

Members of the genus Rhodococcus (See also Chapter 38, Vol. 2, Part 6) are aerobic bacteria, commonly found in the environment, that can degrade a large number of organic compounds including some of the most recalcitrant and toxic. The basis for this capacity is their possession of a remarkable range of diverse catabolic genes coupled with a resilient cellular physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aly HA, Huu NB, Wray V, Junca H, Pieper DH (2008) Two angular dioxygenases contribute to the metabolic versatility of dibenzofuran-degrading Rhodococcus sp. strain HA01. Appl Environ Microbiol 74: 3812–3822.

    PubMed  CAS  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23: 100–105.

    Google Scholar 

  • Bell KS, Philp JC, Aw DW, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85: 195–210.

    PubMed  CAS  Google Scholar 

  • Bouchez-Naitali M, Abbad-Andaloussi S, Warzywoda M, Monot F (2004) Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium. Appl Microbiol Biotechnol 65: 440–445.

    PubMed  CAS  Google Scholar 

  • Briglia M, Eggen RI, Elsas DJ, Van De Vos WM (1994) Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus PCP-I(T) to the genus Mycobacterium. Int J Syst Bacteriol 44: 494–498.

    PubMed  CAS  Google Scholar 

  • Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F, Beguin P (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183: 6551–6557.

    PubMed  CAS  Google Scholar 

  • Curragh H, Flynn O, Larkin MJ, Stafford TM, Hamilton JT, Harper DB (1994) Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB 13064. Microbiology 140: 1433–1442.

    PubMed  CAS  Google Scholar 

  • Davenport RJ, Elliott JN, Curtis TP, Upton J (1998) In situ detection of rhodococci associated with activated sludge foams. Antonie Van Leeuwenhoek 74: 41–48.

    PubMed  CAS  Google Scholar 

  • De Carvalho CC, Da Fonseca MM (2004) Solvent toxicity in organic-aqueous systems analysed by multivariate analysis. Bioprocess Biosyst Eng 26: 361–375.

    PubMed  Google Scholar 

  • De Carvalho CC, Da Fonseca MM (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67: 715–726.

    PubMed  CAS  Google Scholar 

  • De Carvalho CC, Fatal V, Alves SS, Da Fonseca MM (2007) Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl Microbiol Biotechnol 76: 1423–1430.

    PubMed  Google Scholar 

  • De Mot R, De Schrijver A, Schoofs G, Parret AH (2003) The thiocarbamate-inducible Rhodococcus enzyme ThcF as a member of the family of alpha/beta hydrolases with haloperoxidative side activity. FEMS Microbiol Lett 224: 197–203.

    PubMed  CAS  Google Scholar 

  • De Schrijver A, De Mot R (1999) Degradation of pesticides by actinomycetes. Crit Rev Microbiol 25: 85–119.

    PubMed  CAS  Google Scholar 

  • Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR (2008) Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir 24: 4944–4951.

    PubMed  CAS  Google Scholar 

  • Fahy A, Ball AS, Lethbridge G, McGenity TJ, Timmis KN (2008b) High benzene concentrations can favour Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol Ecol 65: 526–533.

    PubMed  CAS  Google Scholar 

  • Fahy A, Ball AS, Lethbridge G, Timmis KN, McGenity TJ (2008a) Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer. Lett Appl Microbiol 47: 60–66.

    PubMed  CAS  Google Scholar 

  • Ferguson AS, Huang WE, Lawson KA, Doherty R, Gibert O, Dickson KW, Whiteley AS, Kulakov LA, Thompson IP, Kalin RM, Larkin MJ (2007) Microbial analysis of soil and groundwater from a gasworks site and comparison with a sequenced biological reactive barrier remediation process. J Appl Microbiol 102: 1227–1238.

    PubMed  CAS  Google Scholar 

  • Ferraroni M, Kolomytseva MP, Solyanikova IP, Scozzafava A, Golovleva LA, Briganti F (2006) Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol. J Mol Biol 360: 788–799.

    PubMed  CAS  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50: 633–657.

    PubMed  CAS  Google Scholar 

  • Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46: 193–218.

    PubMed  CAS  Google Scholar 

  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68: 166–172.

    PubMed  CAS  Google Scholar 

  • Francois A, Garnier L, Mathis H, Fayolle F, Monot F (2003) Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol 62: 256–262.

    PubMed  CAS  Google Scholar 

  • Fuchs K, Schreiner A, Lingens F (1991) Degradation of 2-methylaniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM. J Gen Microbiol 137: 2033–2039.

    PubMed  CAS  Google Scholar 

  • Fujii K, Takagi K, Hiradate S, Iwasaki A, Harada N (2007) Biodegradation of methylthio-s-triazines by Rhodococcus sp. strain FJ1117YT, and production of the corresponding methylsulfinyl, methylsulfonyl and hydroxy analogues. Pest Manag Sci 63: 254–260.

    PubMed  CAS  Google Scholar 

  • Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J Mol Biol 342: 1041–1052.

    PubMed  CAS  Google Scholar 

  • Gakhar L, Malik ZA, Allen CC, Lipscomb DA, Larkin MJ, Ramaswamy S (2005) Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. J Bacteriol 187: 7222–7231.

    PubMed  CAS  Google Scholar 

  • Ghosh A, Paul D, Prakash D, Mayilraj S, Jain RK (2006) Rhodococcus imtechensis sp. nov., a nitrophenol-degrading actinomycete. Int J Syst Evol Microbiol 56: 1965–1969.

    PubMed  CAS  Google Scholar 

  • Gibson DT (1984) Microbial Degradation of Organic Compounds. New York: Marcel Dekker.

    Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11: 236–243.

    PubMed  CAS  Google Scholar 

  • Goethals K, Vereecke D, Jaziri M, Montagu M, Van Holsters M (2001) Leafy gall formation by Rhodococcus fascians. Annu Rev Phytopathol 39: 27–52.

    PubMed  CAS  Google Scholar 

  • Goodfellow M (1989) Suprageneric classification of actinomycetes. In Bergey’s Manual of Systematic Bacteriology, vol. 4. ST Williams, ME Sharpe, and JG Holt (eds.). Baltimore: Williams and Wilkins, pp. 2333 –2339.

    Google Scholar 

  • Goodfellow M, Jones AL, Maldonado LA, Salanitro J (2004) Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 27: 61–65.

    PubMed  CAS  Google Scholar 

  • Gurtler V, Mayall BC, Seviour R (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 28: 377–403.

    PubMed  CAS  Google Scholar 

  • Häggblom MM, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS, Klatte S, Kroppenstedt RM, Hagglblom MM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int J Syst Bacteriol 44: 485–493.

    PubMed  Google Scholar 

  • Hofmann KW, Knackmuss HJ, Heiss G (2004) Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Appl Environ Microbiol 70: 2854–2860.

    PubMed  CAS  Google Scholar 

  • Hunter DJ, Roberts GA, Ost TW, White JH, Muller S, Turner NJ, Flitsch SL, Chapman SK (2005) Analysis of the domain properties of the novel cytochrome P450 RhF. FEBS Lett 579: 2215–2220.

    PubMed  CAS  Google Scholar 

  • Iida T, Mukouzaka Y, Nakamura K, Yamaguchi I, Kudo T (2002) Isolation and characterization of dibenzofuran-degrading actinomycetes: analysis of multiple extradiol dioxygenase genes in dibenzofuran-degrading Rhodococcus species. Biosci Biotechnol Biochem 66: 1462–1472.

    PubMed  CAS  Google Scholar 

  • Irvine VA, Kulakov LA, Larkin MJ (2000) The diversity of extradiol dioxygenase (edo) genes in cresol degrading rhodococci from a creosote-contaminated site that express a wide range of degradative abilities. Antonie Van Leeuwenhoek 78: 341–352.

    PubMed  CAS  Google Scholar 

  • Iwasaki T, Takeda H, Miyauchi K, Yamada T, Masai E, Fukuda M (2007) Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in A PCB degrader, Rhodococcus sp. strain RHA1. Biosci Biotechnol Biochem 71: 993–1002.

    PubMed  CAS  Google Scholar 

  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA 104: 16822–16827.

    PubMed  CAS  Google Scholar 

  • Jiménez N, Viñas M, Bayona JM, Albaiges J, Solanas AM (2007) The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. Appl Microbiol Biotechnol 77: 935–45.

    PubMed  Google Scholar 

  • Kalkus J, Dorrie C, Fischer D, Reh M, Schlegel HG (1993) The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy: characterization of the plasmid and its termini. J Gen Microbiol 139: 2055–2065.

    PubMed  CAS  Google Scholar 

  • Karlson U, Dwyer DF, Hooper SW, Moore ER, Timmis KN, Eltis LD (1993) Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol 175: 1467–1474.

    PubMed  CAS  Google Scholar 

  • Kauffmann IM, Schmitt J, Schmid RD (2004) DNA isolation from soil samples for cloning in different hosts. Appl Microbiol Biotechnol 64: 665–670.

    PubMed  CAS  Google Scholar 

  • Kedlaya I, Ing MB, Wong SS (2001) Rhodococcus equi infections in immunocompetent hosts: case report and review. Clin Infect Dis 32: E39–E46.

    PubMed  CAS  Google Scholar 

  • Kim YH, Engesser KH (2004) Degradation of alkyl ethers, aralkyl ethers, and dibenzyl ether by Rhodococcus sp. strain DEE5151, isolated from diethyl ether-containing enrichment cultures. Appl Environ Microbiol 70: 4398–4401.

    PubMed  CAS  Google Scholar 

  • Kim YH, Engesser KH, Kim SJ (2007) Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 9: 1497–1510.

    PubMed  CAS  Google Scholar 

  • Kimura N, Kitagawa W, Mori T, Nakashima N, Tamura T, Kamagata Y (2006) Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from Rhodococcus opacus strain SAO101. Appl Microbiol Biotechnol 73: 474–484.

    PubMed  CAS  Google Scholar 

  • Kirimura K, Furuya T, Sato R, Ishii Y, Kino K, Usami S (2002) Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl Environ Microbiol 68: 3867–3872.

    PubMed  CAS  Google Scholar 

  • Kitagawa W, Kimura N, Kamagata Y (2004) A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101 . J Bacteriol 186: 4894–4902.

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Onaka T, Ishii Y, Konishi J, Takaki M, Okada H, Ohta Y, Koizumi K, Suzuki M (2000) Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS Microbiol Lett 187: 123–126.

    PubMed  CAS  Google Scholar 

  • Kulakov LA, Chen S, Allen CC, Larkin MJ (2005) Web-type evolution of rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol 71: 1754–1764.

    PubMed  CAS  Google Scholar 

  • Kulakova AN, Larkin MJ, Kulakov LA (1997) The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology 143(Pt 1): 109–115.

    PubMed  CAS  Google Scholar 

  • Kunihiro N, Haruki M, Takano K, Morikawa M, Kanaya S (2005) Isolation and characterization of Rhodococcus sp. strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures. J Biotechnol 115: 129–136.

    PubMed  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31: 155–161.

    PubMed  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74: 59–70.

    PubMed  CAS  Google Scholar 

  • Larkin MJ, Allen CC, Kulakov LA, Lipscomb DA (1999) Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J Bacteriol 181: 6200–6204.

    PubMed  CAS  Google Scholar 

  • Larkin MJ, Allen CCR, Kulakov LA (2006) Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. Adv Appl Microbiol 59: 1–28.

    PubMed  CAS  Google Scholar 

  • Larkin MJ, De Mot R, Kulakov LA, Nagy I (1998) Applied aspects of Rhodococcus genetics. Antonie Van Leeuwenhoek 74: 133–153.

    PubMed  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 16: 282–290.

    PubMed  CAS  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27: 449–479.

    PubMed  CAS  Google Scholar 

  • LeBlanc JC, Goncalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74: 2627–2636.

    PubMed  CAS  Google Scholar 

  • Lee JB, Sohn HY, Shin KS, Kim JS, Jo MS, Jeon CP, Jang JO, Kim JE, Kwon GS (2008) Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline. J Microbiol Biotechnol 18: 343–349.

    PubMed  CAS  Google Scholar 

  • Li GQ, Li SS, Qu SW, Liu QK, Ma T, Zhu L, Liang FL, Liu RL (2008a) Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett 30: 1759–1764.

    PubMed  CAS  Google Scholar 

  • Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, Liu RL, Ma T (2008b) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74: 971–976.

    PubMed  CAS  Google Scholar 

  • Li GQ, Ma T, Li SS, Li H, Liang FL, Liu RL (2007) Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Biosci Biotechnol Biochem 71: 849–854.

    PubMed  CAS  Google Scholar 

  • Locci RG (1984) Morphology. In The Biology of the Actinomycetes. M Goodfellow and M Mordarski (eds.). New York: Academic Press, pp. 165–199.

    Google Scholar 

  • Matsui T, Noda K, Tanaka Y, Maruhashi K, Kurane R (2002) Recombinant Rhodococcus sp. strain T09 can desulfurize DBT in the presence of inorganic sulfate. Curr Microbiol 45: 240–244.

    PubMed  CAS  Google Scholar 

  • Mayilraj S, Krishnamurthi S, Saha P, Saini HS (2006) Rhodococcus kroppenstedtii sp. nov., a novel actinobacterium isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 56: 979–982.

    PubMed  CAS  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103: 15582–15587.

    PubMed  Google Scholar 

  • Mertingk H, Muller RH, Babel W (1998) Etherolytic cleavage of 4-(2,4-dichlorophenoxy)butyric acid and 4-(4-chloro-2-methylphenoxy)butyric acid by species of Rhodococcus and Aureobacterium isolated from an alkaline environment. J Basic Microbiol 38: 257–267.

    PubMed  CAS  Google Scholar 

  • Mo K, Lora CO, Wanken AE, Javanmardian M, Yang X, Kulpa CF (1997) Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol 47: 69–72.

    PubMed  CAS  Google Scholar 

  • Moser R, Stahl U (2001) Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl Microbiol Biotechnol 55: 609–618.

    PubMed  CAS  Google Scholar 

  • Mulbury WW, Zhu H, Nour SM, Topp E (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: Cloning and construction of gene-specific primers. FEMS Microbiol Lett 206: 75–79.

    Google Scholar 

  • Mustacchi R, Knowles CJ, Li H, Dalrymple I, Sunderland G, Skibar W, Jackman SA (2005) The effect of whole cell immobilisation on the biotransformation of benzonitrile and the use of direct electric current for enhanced product removal. Biotechnol Bioeng 91: 436–440.

    PubMed  CAS  Google Scholar 

  • Nagy I, Verheijen S, De Schrijver A, Damme J, Van Proost P, Schoofs G, Vanderleyden J, De Mot R (1995) Characterization of the Rhodococcus sp. NI86/21 gene encoding alcohol: N,N′-dimethyl-4-nitrosoaniline oxidoreductase inducible by atrazine and thiocarbamate herbicides. Arch Microbiol 163: 439–446.

    PubMed  CAS  Google Scholar 

  • Navratilova J, Tvrzova L, Durnova E, Sproer C, Sedlacek I, Neca J, Nemec M (2005) Characterization of Rhodococcus wratislaviensis strain J3 that degrades 4-nitrocatechol and other nitroaromatic compounds. Antonie Van Leeuwenhoek 87: 149–153.

    PubMed  CAS  Google Scholar 

  • O’Brien XM, Parker JA, Lessard PA, Sinskey AJ (2002) Engineering an indene bioconversion process for the production of cis-aminoindanol: a model system for the production of chiral synthons. Appl Microbiol Biotechnol 59: 389–399.

    PubMed  Google Scholar 

  • Park SY, Hwang BJ, Shin MH, Kim JA, Kim HK, Lee JK (2006) N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiol Lett 261: 102–108.

    PubMed  CAS  Google Scholar 

  • Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102: 1603–1611.

    PubMed  CAS  Google Scholar 

  • Peng F, Wang Y, Sun F, Liu Z, Lai Q, Shao Z (2008) A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 105: 698–705.

    PubMed  CAS  Google Scholar 

  • Perry MB, MacLean LL, Patrauchan MA, Vinogradov E (2007) The structure of the exocellular polysaccharide produced by Rhodococcus sp RHA1. Carbohydr Res 342: 2223–2229.

    PubMed  CAS  Google Scholar 

  • Philp JC, Kuyukina MS, Ivshina IB, Dunbar SA, Christofi N, Lang S, Wray V (2002) Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl Microbiol Biotechnol 59: 318–324.

    PubMed  CAS  Google Scholar 

  • Poelarends GJ, Kulakov LA, Larkin MJ, Hylckama Vlieg JE, van Janssen DB (2000a) Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways. J Bacteriol 182: 2191–2199.

    PubMed  CAS  Google Scholar 

  • Poelarends GJ, Zandstra M, Bosma T, Kulakov LA, Larkin MJ, Marchesi JR, Weightman AJ, Janssen DB (2000b) Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. J Bacteriol 182: 2725–2731.

    PubMed  CAS  Google Scholar 

  • Prince RC, Grossman MJ (2003) Substrate preferences in biodesulfurization of diesel range fuels by Rhodococcus sp. strain ECRD-1. Appl Environ Microbiol 69: 5833–5838.

    PubMed  CAS  Google Scholar 

  • Purswani J, Pozo C, Rodriguez-Diaz M, Gonzalez-Lopez J (2008) Selection and Identification of Bacterial Strains with Methyl t-Butyl Ether, Ethyl t-Butyl Ether, and t-Amyl Methyl Ether Degrading Capacities. Environ Toxicol Chem 27: 2296–2303.

    PubMed  CAS  Google Scholar 

  • Rainey FA, Klatte S, Kroppenstedt RM, Stackebrandt E (1995) Dietzia, a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. Int J Syst Bacteriol 45: 32–36.

    PubMed  CAS  Google Scholar 

  • Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70: 4303–4317.

    PubMed  CAS  Google Scholar 

  • Roberts GA, Celik A, Hunter DJ, Ost TW, White JH, Chapman SK, Turner NJ, Flitsch SL (2003) A self-sufficient cytochrome p450 with a primary structural organization that includes a flavin domain and a [2Fe-2S] redox center. J Biol Chem 278: 48914–48920.

    PubMed  CAS  Google Scholar 

  • Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ (2002) Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 184: 3898–3908.

    PubMed  CAS  Google Scholar 

  • Sallis PJ, Armfield SJ, Bull AT, Hardman DJ (1990) Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J Gen Microbiol 136(Pt 1): 115–120.

    PubMed  CAS  Google Scholar 

  • Santos SC, Alviano DS, Alviano CS, Goulart FR, de Padula M, Leitao AC, Martins OB, Ribeiro CM, Sassaki MY, Matta CP, Bevilaqua J, Sebastian GV, Seldin L (2007) Comparative studies of phenotypic and genetic characteristics between two desulfurizing isolates of Rhodococcus erythropolis and the well-characterized R. erythropolis strain IGTS8. J Ind Microbiol Biotechnol 34: 423–431.

    PubMed  CAS  Google Scholar 

  • Seth-Smith HM, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74: 4550–4552.

    PubMed  CAS  Google Scholar 

  • Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68: 4764–4771.

    PubMed  CAS  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49: 523–555.

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Rainey FA, WardRainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47: 479–491.

    Google Scholar 

  • Strauber H, Muller RH, Babel W (2003) Evidence of cytochrome P450-catalyzed cleavage of the ether bond of phenoxybutyrate herbicides in Rhodococcus erythropolis K2–3. Biodegradation 14: 41–50.

    PubMed  Google Scholar 

  • Taguchi K, Motoyama M, Iida T, Kudo T (2007) Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of Rhodococci. Biosci Biotechnol Biochem 71: 1136–1144.

    PubMed  CAS  Google Scholar 

  • Takei D, Washio K, Morikawa M (2008) Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnol Lett 30: 1447–1452.

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59: 325–328.

    PubMed  CAS  Google Scholar 

  • Tancsics A, Szoboszlay S, Kriszt B, Kukolya J, Baka E, Marialigeti K, Revesz S (2008) Applicability of the functional gene catechol 1,2-dioxygenase as a biomarker in the detection of BTEX-degrading Rhodococcus species. J Appl Microbiol 105: 1026–1033.

    PubMed  CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104: 1703–1710.

    PubMed  CAS  Google Scholar 

  • Urai M, Aizawa T, Anzai H, Ogihara J, Iwabuchi N, Neilan B, Couperwhite I, Nakajima M, Sunairi M (2006) Structural analysis of an extracellular polysaccharide produced by a benzene tolerant bacterium, Rhodococcus sp 33. Carbohydr Res 341: 616–623.

    PubMed  CAS  Google Scholar 

  • Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151: 3313–3322.

    PubMed  CAS  Google Scholar 

  • Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149: 1981–1989.

    PubMed  CAS  Google Scholar 

  • Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74: 1357–1366.

    PubMed  CAS  Google Scholar 

  • Geize R, van der Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7: 255–261.

    PubMed  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14: 29–73.

    PubMed  CAS  Google Scholar 

  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65: 2961–2968.

    PubMed  CAS  Google Scholar 

  • Whyte LG, Smits TH, Labbe D, Witholt B, Greer CW, Beilen JB van (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68: 5933–5942.

    PubMed  CAS  Google Scholar 

  • Williams ST (1976) The micromorphology and fine structure of nocardioform organisms. In The Biology of the Nocardiae. M Goodfellow, GH Brownell, and JA (eds.). Serrano New York: Academic Press, pp. 103–140.

    Google Scholar 

  • Winterton N (2000) Chlorine: the only green element – towards a wider acceptance of its role in natural cycles. Green Chem 2: 1732–2225.

    Google Scholar 

  • Yassin AF, Schaal KP (2005) Reclassification of Nocardia corynebacterioides Serrano et al. 1972 (Approved Lists 1980) as Rhodococcus corynebacterioides comb. nov. Int J Syst Evol Microbiol 55: 1345–1348.

    PubMed  CAS  Google Scholar 

  • Yoon JH, Kang SS, Cho YG, Lee ST, Kho YH, Kim CJ, Park YH (2000) Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium. Int J Syst Evol Microbiol 6(Pt 50): 2173–2180.

    Google Scholar 

  • Yu B, Ma C, Zhou W, Wang Y, Cai X, Tao F, Zhang Q, Tong M, Qu J, Xu P (2006) Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiol Lett 258: 284–289.

    PubMed  CAS  Google Scholar 

  • Zhu SN, Liu DQ, Fan L, Ni JR (2008) Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge. J Hazard Mater 160(2–3): 289–294.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Larkin, M., Kulakov, L., Allen, C. (2010). Rhodococcus. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_134

Download citation

Publish with us

Policies and ethics