Skip to main content

Abstract:

Six out of 23 genera of the family Xanthomonadaceae in the Gammaproteobacteria are involved directly or indirectly in oil or petroleum hydrocarbon degradation. In this chapter we discuss the taxonomy, physiology, and ecology of species of Hydrocarboniphaga, Pseudoxanthomonas, Rhodanobacter, Stenotrophomonas, Xanthomonas, and Xylella that are involved in oil degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed R, Köster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegrad 55: 29–37.

    Article  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45: 180–209.

    PubMed  CAS  Google Scholar 

  • Berg G, Roskot N, Smalla K (1999) Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 37: 3594–3600.

    PubMed  CAS  Google Scholar 

  • Bieszkiewicz E, Boszczyk-Maleszak H, Kaczorowska B, Mycielski R (1995) Isolation and identification of bacteria from activated sludge purifying petroleum wastewaters. Acta Microbiol Pol 44: 171–179.

    PubMed  CAS  Google Scholar 

  • Bieszkiewicz E, Horoch M, Boszczyk-Maleszak H, Mycielski R (1998) An attempt to use selected strains of bacteria adapted to high concentrations of petroleum oil to increase the effective removal of petroleum products in excess activated sludge in laboratory conditions. Acta Microbiol Pol 47: 305–312.

    PubMed  CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (1998) Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnol Bioeng 59: 482–494.

    Article  PubMed  CAS  Google Scholar 

  • Boszczyk-Maleszak H, Zabost A, Wolicka D, Kacieszczenko J (2006) Effectiveness of biodegradation of petroleum products by mixed bacterial populations in liquid medium at different pH values. Pol J Microbiol 55: 69–73.

    PubMed  CAS  Google Scholar 

  • Chang JS, Chou CL, Lin GH, Sheu SY, Chen WM (2005) Pseudoxanthomonas kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28: 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Hauben L, Vauterin L, Moore ER, Hoste B, Swings J (1999) Genomic diversity of the genus Stenotrophomonas. Int J Syst Bacteriol 49 Pt 4: 1749–1760.

    Article  PubMed  CAS  Google Scholar 

  • Hawle-Ambrosch E, Riepe W, Dornmayr-Pfaffenhuemer M, Radax C, Holzinger A, Stan-Lotter H (2007) Biodegradation of fuel oil hydrocarbons by a mixed bacterial consortium in sandy and loamy soils. Biotechnol J 2: 1564–1568.

    Article  PubMed  CAS  Google Scholar 

  • Jesenska A, Bartos M, Czernekova V, Rychlik I, Pavlik I, Damborsky J (2002) Cloning and expression of the haloalkane dehalogenase gene dhmA from Mycobacterium avium N85 and preliminary characterization of DhmA. Appl Environ Microbiol 68: 3724–3730.

    Article  PubMed  CAS  Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30: 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Juteau P, Larocque R, Rho D, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52: 863–868.

    Article  PubMed  CAS  Google Scholar 

  • Kanaly RA, Harayama S, Watanabe K (2002) Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68: 5826–5833.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70: 1777–1786.

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Kim KK, Aslam Z, Lee ST (2007) Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57: 1775–1779.

    Article  PubMed  Google Scholar 

  • Liste HH, Felgentreu D (2006) Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl Soil Ecology 31: 43–52.

    Article  Google Scholar 

  • Mariano AP (2007) Laboratory study of the bioremediation of diesel oil contaminated soil from a petrol station. Brazilian J Microbiol 38: 346–353.

    Google Scholar 

  • Martin-Gil J, Navas-Gracia LS, Gomez-Sobrino E, Correa-Guimaraes A, Hernandez-Navarro S, Sanchez-Bascones M, Del Carmen Ramos-Sanchez M (2008) Composting and vermicomposting experiences in the treatment and bioconversion of asphaltens from the Prestige oil spill. Bioresour Technol 99: 1821–1829.

    Article  PubMed  CAS  Google Scholar 

  • Miyake D, Kasahara Y, Morisaki H (2003) Distribution and characterization of antibiotic resistant bacteria in the sediment of southern basin of Lake Biwa. Microbes Environ 18: 24–31.

    Article  Google Scholar 

  • Nakabachi A, Ishikawa H, Kudo T (2003) Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum. J Invertebr Pathol 82: 152–161.

    Article  PubMed  Google Scholar 

  • Nalin R, Simonet P, Vogel TM, Normand P (1999) Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49 (Pt 1): 19–23.

    Article  PubMed  Google Scholar 

  • Palleroni NJ, Bradbury JF (1993) Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al., 1983. Int J Syst Bacteriol 43: 606–609.

    Article  PubMed  CAS  Google Scholar 

  • Palleroni NJ, Port AM, Chang HK, Zylstra GJ (2004) Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the gamma-proteobacteria active in alkane and aromatic hydrocarbon degradation. Int J Syst Evol Microbiol 54: 1203–1207.

    Article  PubMed  CAS  Google Scholar 

  • Ralebitso TK, Roling WF, Braster M, Senior E, van Verseveld HW (2000) 16S rDNA-based characterization of BTX-catabolizing microbial associations isolated from a South African sandy soil. Biodegradation 11: 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez O, Diestra E, Esteve I, Mas J (2005) Molecular characterization of an oil-degrading cyanobacterial consortium. Microb Ecol 50: 580–588.

    Article  PubMed  CAS  Google Scholar 

  • Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LM, Araya JE, Baia GS, Baptista CS, et al. (2000) The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 406: 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Su JJ, Kafkewitz D (1996) Toluene and xylene degradation by a denitrifying strain of Xanthomonas maltophilia with limited or no oxygen. Chemosphere 32: 1843–1850.

    Article  CAS  Google Scholar 

  • Thierry S, Macarie H, Iizuka T, Geissdorfer W, Assih EA, Spanevello M, Verhe F, Thomas P, Fudou R, Monroy O, et al. (2004) Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al., 2000 and of its type species. Int J Syst Evol Microbiol 54: 2245–2255.

    Article  PubMed  CAS  Google Scholar 

  • van der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, et al. (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307: 121–123.

    Article  PubMed  Google Scholar 

  • Van Hamme JD, Odumeru JA, Ward OP (2000) Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Can J Microbiol 46: 441–450.

    Article  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67: 503–549.

    Article  PubMed  Google Scholar 

  • Vinas M, Sabate J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71: 7008–7018.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Teramoto M, Harayama S (1999) An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated-sludge process. Appl Environ Microbiol 65: 2813–2819.

    PubMed  CAS  Google Scholar 

  • Wells JM, Raju BC, Hung HY, Weisburg WG, Parl LM, Beemer D (1987) Xylella fastidiosa gen. nov.sp. nov.: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37: 136–143.

    Article  CAS  Google Scholar 

  • Yoshida N, Yagi K, Sato D, Watanabe N, Kuroishi T, Nishimoto K, Yanagida A, Katsuragi T, Kanagawa T, Kurane R, et al. (2005) Bacterial communities in petroleum oil in stockpiles. J Biosci Bioeng 99: 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Young CC, Ho MJ, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Yassin AF (2007) Pseudoxanthomonas spadix sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57: 1823–1827.

    Article  PubMed  CAS  Google Scholar 

  • Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32: 69–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chang, HK., Zylstra*, G.J. (2010). Xanthomonads. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_131

Download citation

Publish with us

Policies and ethics