Skip to main content

Nitrogen Fixation and Hydrocarbon-Oxidizing Bacteria

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

The ability to reduce atmospheric nitrogen to ammonia (N2 fixation) is well known in a diversity of prokaryotes, yet only a limited number of bacterial species is known to combine this activity with the ability to oxidize hydrocarbons ranging from methane to longer-chain n-alkanes, alkenes and aromatics. Whereas these activities can occur simultaneously in some methane-oxidizing bacteria (methanotrophs), very few reports have conclusively demonstrated simultaneous N2 fixation and growth on hydrocarbons larger than methane or ethane. This phenomenon may result from incompatibilities in physiology and/or gene regulation. More commonly, consortia of bacteria have been found to support hydrocarbon degradation through N2 fixation, leading to speculation that phytoremediation (the use of living plants to ameliorate hydrocarbon contamination) may be a valuable option for oil spill cleanup, particularly in N-limited soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Köster J (2005) The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegradation 55: 29–37.

    Article  CAS  Google Scholar 

  • Abed RMM, Safi NMD, Köster J, De Beer D, El-Nahhal Y, Rullkötter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl Environ Microbiol 68: 1674–1683.

    Article  PubMed  CAS  Google Scholar 

  • Amos RT, Mayer KU, Bekins BA, Delin GN, Williams RL (2005) Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface. Water Resour Res 41: 1–15.

    Article  Google Scholar 

  • Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67: 4009–4016.

    Article  PubMed  CAS  Google Scholar 

  • Boulygina ES, Kuznetsov BB, Marusina AI, Tourova TP, Kravchenko IK, Bykova SA, Kolganova TV, Galchenko VF (2002) A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology 71: 425–432.

    Article  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116: 495–500.

    CAS  Google Scholar 

  • Chen YP, Lopez-de-Victoria G, Lovell CR (1993) Utilization of aromatic compounds as carbon and energy sources during growth and N2-fixation by free-living nitrogen fixing bacteria. Arch Microbiol 159: 207–212.

    Article  CAS  Google Scholar 

  • Chu K-H, Alvarez-Cohen L (1998) Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria. Appl Environ Microbiol 64: 3451–3457.

    PubMed  CAS  Google Scholar 

  • Coty VF (1967) Atmospheric nitrogen fixation by hydrocarbon-oxidizing bacteria. Biotechnol Bioeng IX: 25–32.

    Article  Google Scholar 

  • Davis JB, Coty VF, Stanley JP (1964) Atmospheric nitrogen fixation by methane-oxidizing bacteria. J Bacteriol 88: 468–472.

    PubMed  CAS  Google Scholar 

  • Davis JB, Stanley JP (1965) Microbiological nitrogen fixation. US Patent #3,210,179.

    Google Scholar 

  • de Bont JAM, Mulder EG (1974) Nitrogen-fixation and co-oxidation of ethylene by a methane-utilizing bacterium. J Gen Microbiol 83: 113–121.

    Google Scholar 

  • Eckford R, Cook FD, Saul D, Aislabie J, Foght J (2002) Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl Environ Microbiol 68: 5181–5185.

    Article  PubMed  CAS  Google Scholar 

  • Fries MR, Zhou J, Chee-Sanford J, Tiedje JM (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60: 2802–2810.

    PubMed  CAS  Google Scholar 

  • Gradova NB, Gornova IB, Eddaudi R, Salina RN (2003) Use of bacteria of the genus Azotobacter for bioremediation of oil-contaminated soils. Appl Biochem Microbiol 39: 279–281.

    Article  CAS  Google Scholar 

  • Hamamura N, Storfa RT, Semprini L, Arp DJ (1999) Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65: 4586–4593.

    PubMed  CAS  Google Scholar 

  • Harper HJ (1939) The effect of natural gas on the growth of microorganisms and the accumulation of nitrogen and organic matter in the soil. Soil Sci 48: 461–466.

    Article  CAS  Google Scholar 

  • Knowles R, Wishart C (1977) Nitrogen fixation in arctic marine sediments: effect of oil and hydrocarbon fractions. Environ Pollut 13: 133–149.

    Article  CAS  Google Scholar 

  • Laguerre G, Bossand B, Bardin R (1987) Free-living dinitrogen-fixing bacteria isolated from petroleum refinery oily sludge. Appl Environ Microbiol 53: 1674–1678.

    PubMed  CAS  Google Scholar 

  • Musat F, Harder J, Widdel F (2006) Study of nitrogen fixation in microbial communities of oil-contaminated marine sediment microcosms. Environ Microbiol 8: 1834–1843.

    Article  PubMed  CAS  Google Scholar 

  • Onwurah INE, Nwuke C (2004) Enhanced bioremediation of crude oil-contaminated soil by a Pseudomonas species and mutually associated adapted Azotobacter vinelandii. J Chem Technol Biotechnol 79: 491–498.

    Article  CAS  Google Scholar 

  • Pérez-Vargas J, Poggi-Varaldo HM, Calva-Calva G, Ríos-Leal E, Rodríguez-Vázquez R, Ferrera-Cerrato R, Esparza-García F (2000) Nitrogen-fixing bacteria capable of utilising kerosene hydrocarbons as a sole carbon source. Water Sci Technol 42: 407–410.

    Google Scholar 

  • Piehler MF, Swistak JG, Pinckney JL, Paerl HW (1999) Stimulation of diesel fuel biodegradation by indigenous nitrogen fixing bacterial consortia. Microbial Ecol 38: 69–78.

    Article  CAS  Google Scholar 

  • Prantera MT, Drozdowicz A, Gomes Leite S, Soares Rosado A (2002) Degradation of gasoline aromatic hydrocarbons by two N2-fixing soil bacteria. Biotechnol Lett 24: 85–89.

    Article  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr I, Khanafer M (2007) Hydrocarbon utilization by nodule bacteria and plant growth-promoting rhizobacteria. Int J Phytoremediation 9: 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Rivière J, Oudot J, Jonquères J, Gatellier G (1974) Fixation d’azote atmosphérique par des bactéries utilisant l’hexadécane comme source de carbone et d’énergie. Ann Agron 25: 633–644.

    Google Scholar 

  • Roy I, Shukla SK, Mishra AK (1988) n-Dodecane as a substrate for nitrogen fixation by an alkane-utilizing Azospirillum sp. Curr Microbiol 16: 303–309.

    Article  CAS  Google Scholar 

  • Sánchez O, Diestra E, Esteve I, Mas J (2005) Molecular characterization of an oil-degrading cyanobacterial consortium. Microbial Ecol 50: 580–588.

    Article  Google Scholar 

  • Schollenberger CJ (1930) Effect of leaking natural gas upon the soil. Soil Sci 29: 261–266.

    Article  CAS  Google Scholar 

  • Sorkhoh N, Al-Hasan R, Radwan S, Hopner T (1992) Self-cleaning of the gulf. Nature 359: 109.

    Article  Google Scholar 

  • Toccalino PL, Johnson RL, Boone DR (1993) Nitrogen limitation and nitrogen fixation during alkane biodegradation in a sandy soil. Appl Environ Microbiol 59: 2977–2983.

    PubMed  CAS  Google Scholar 

  • van Ginkel CG, de Bont JAM (1986) Isolation and characterization of alkene-utilizing Xanthobacter spp. Arch Microbiol 145: 403–407.

    Article  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5: 539–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Foght, J. (2010). Nitrogen Fixation and Hydrocarbon-Oxidizing Bacteria. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_117

Download citation

Publish with us

Policies and ethics