Skip to main content

Solving Discrete Logarithms from Partial Knowledge of the Key

  • Conference paper
Progress in Cryptology – INDOCRYPT 2007 (INDOCRYPT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4859))

Included in the following conference series:

Abstract

For elliptic curve based cryptosystems, the discrete logarithm problem must be hard to solve. But even when this is true from a mathematical point of view, side-channel attacks could be used to reveal information about the key if proper countermeasures are not used. In this paper, we study the difficulty of the discrete logarithm problem when partial information about the key is revealed by side channel attacks. We provide algorithms to solve the discrete logarithm problem for generic groups with partial knowledge of the key which are considerably better than using a square-root attack on the whole key or doing an exhaustive search using the extra information, under two different scenarios. In the first scenario, we assume that a sequence of contiguous bits of the key is revealed. In the second scenario, we assume that partial information on the “Square and Multiply Chain” is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brier, É., Déchène, I., Joye, M.: Unified point addition formulæ for elliptic curve cryptosystems. In: Embedded Cryptographic Hardware: Methodologies and Architectures, pp. 247–256. Nova Science Publishers (2004)

    Google Scholar 

  2. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Cheng, Q.: On the bounded sum-of-digits discrete logarithm problem in finite fields. SIAM J. Comput. 34(6), 1432–1442 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27, 129–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes. Des. Codes Cryptogr. 23(3), 283–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  9. Leadbitter, P.J., Page, D., Smart, N.P.: Attacking DSA under a repeated bits assumption. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 428–440. Springer, Heidelberg (2004)

    Google Scholar 

  10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton (1996)

    Google Scholar 

  11. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm with partially known nonces. J. Cryptology 15(3), 151–176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature algorithm with partially known nonces. Des. Codes Cryptogr. 30(2), 201–217 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Odlyzko, A.M.: Discrete logarithms: The past and the future. Designs, Codes and Cryptography 19, 129–145 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24, 106–110 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Mathematics of Computation 32(143), 918–924 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pollard, J.M.: Kangaroos, Monopoly and discrete logarithms. Journal of Cryptology 13(4), 437–447 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): Measures and counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Schrijver, A.: Theory of Linear and Integer Programming. In: Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Chichester (1986)

    Google Scholar 

  19. Shanks, D.: Class number, a theory of factorization and genera. In: Proc. Symp. Pure Math., vol. 20, pp. 415–440 (1971)

    Google Scholar 

  20. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

  21. Stebila, D., Thériault, N.: Unified point addition formulae and side-channel attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 354–368. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Stinson, D.: Some baby-step giant-step algorithms for the low hamming weight discrete logarithm problem. Math. Comp. 71(237), 379–391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Teske, E.: Square-root algorithms for the discrete logarithm problem (a survey). In: Public-Key Cryptography and Computational Number Theory, pp. 283–301. Walter de Gruyter, Berlin (2001)

    Google Scholar 

  24. Walter, C.D.: Simple power analysis of unified code for ECC double and add. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 191–204. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Srinathan C. Pandu Rangan Moti Yung

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopalakrishnan, K., Thériault, N., Yao, C.Z. (2007). Solving Discrete Logarithms from Partial Knowledge of the Key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds) Progress in Cryptology – INDOCRYPT 2007. INDOCRYPT 2007. Lecture Notes in Computer Science, vol 4859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77026-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77026-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77025-1

  • Online ISBN: 978-3-540-77026-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics