Skip to main content

Effects of Geomagnetic Variations on System Earth

  • Chapter
Geomagnetic Field Variations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumjohann, W. and Treumann, R. A. (1997). Basic Space Plasma Physics. Imperial Coll. Press, London.

    Google Scholar 

  • Bethe, H. A. (1950). The range-energy relation for slow alpha-particles and protons in air. Rev. Mod. Phys., 22:213.

    Article  Google Scholar 

  • Bieber, J. W., Eroshenko, E., Evenson, P., Flueckiger, E. O., and Kallenbach, R. (2000). Cosmic rays and Earth. Kluwer, Dordrecht.

    Google Scholar 

  • Biernat, H. K., Kömle, N. I., and Lichtenberger, H. I. M. (1985). Analytical two-dimensional model of a quadrupole magnetosphere. Planet. Space Sci., 33:45–52.

    Article  Google Scholar 

  • Bornebusch, J. P. (2005). Asymmetrie in der Verteilung prezipierender Teilchen in den Polkappen. Diploma thesis, Univ. of Osnabrück.

    Google Scholar 

  • Bornebusch, J. P., Wissing, J. M., and Kallenrode, M.-B. (2008). Influences on polar particle precipitation. Adv. Space Res., in press.

    Google Scholar 

  • Callis, L. B., Natarajan, M., Lambeth, J. D., and Baker, D. N. (1998). Solar atmospheric coupling by electrons (solace), 2. Calculated stratospheric effects of precipitating electrons, 1979–1988. J. Geophys. Res., 103:28 241.

    Google Scholar 

  • Cane, H. V., McGuire, R. E., and von Rosenvinge, T. T. (1986). Two classes of solar energetic particle events associated with impulsive and long-duration soft x-ray flares. Astrophys. J., 301:448.

    Article  Google Scholar 

  • Chipperfield, M. (1999). Multiannual simulations with a three-dimensional chemical transport model. J. Geophys. Res., 104:1781–1805.

    Article  Google Scholar 

  • Clement, B. M. (1991). Geographical distribution of transitional VGP’s: Evidence for non-zonal equatorial symmetry during the Matuyama-Brunhes geomagnetic reversal. Earth Planet. Sci. Lett., 104:48–58.

    Article  Google Scholar 

  • Clement, B. M. and Kent, D. V. (1985). A comparison of two sequential polarity transitions (upper Olivai and lower Jaramillo) from the southern hemisphere. Phys. Earth Planet. Inter., 39:310–313.

    Article  Google Scholar 

  • Cockell, C. (1999). Crises and extinction in the fossil record – a role for ultraviolet radiation? Paleobiology, 25:212–225.

    Google Scholar 

  • Coe, R. S. and Prevot, M. (1989). Evidence suggesting extremely rapid field variation during during a geomagnetic reversal. Earth Planet. Sci. Lett., 92:292–298.

    Article  Google Scholar 

  • Coe, R. S., Prevot, M., and Camps, P. (1995). New evidence for extraordinarily rapid change of the geomagnetic field during a reversal. Nature, 374:687–692.

    Article  Google Scholar 

  • Constable, C. and Parker, R. (1988). Statistics of the geomagnetic secular variation for the past 5 My. J. Geophys. Res., 93:11569–11581.

    Article  Google Scholar 

  • Crutzen, P. and Bruehl, C. (1996). Mass extinctions and supernova explosions. Proc. Natl. Acad. Sci. USA, 93:1582–1584.

    Article  Google Scholar 

  • Crutzen, P. J., Isaksen, I. S. A., and Reid, G. C. (1975). Solar Proton Events: Stratospheric Sources of Nitric Oxide. Science, 189:457–459.

    Article  Google Scholar 

  • Ellis, J. and Schramm, D. (1995). Could a nearby supernova explosion have caused a mass extinction? Proc. Natl. Acad. Sci. USA, 92:235–238.

    Article  Google Scholar 

  • Fanselow, J. L. and Stone, E. C. (1972). Geomagnetic cutoffs for cosmic ray protons for seven energy intervals between 1.2 and 39 Mev. J. Geophys. Res., 7:3999–4009.

    Article  Google Scholar 

  • Flueckiger, E. O. and Kobel, E. (1990). Aspects of combining models of the Earth’s internal and external magnetic field. J. Geomag. Geoelectr., 42:1123–1136.

    Google Scholar 

  • Glassmeier, K., Vogt, J., Stadelmann, A., and Buchert, S. (2004). Concerning long-term geomagnetic variations and space climatology. Ann. Geophys., 22:3669–3677.

    Article  Google Scholar 

  • Glassmeier, K.-H. (1997). The Hermean magnetosphere and its ionosphere-magnetosphere coupling. Planet. Space Sci., 45:119–125.

    Article  Google Scholar 

  • Glatzmaier, G. A. and Roberts, P. H. (1995). A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377:203–209.

    Article  Google Scholar 

  • Glatzmaier, G. A. and Roberts, P. H. (1996). Rotation and magnetism of Earth’s inner core. Science, 274:1887–1891.

    Article  Google Scholar 

  • Gombosi, T. I., DeZeeuw, D. L., Groth, C. P. T., Powell, K. G., and Song, P. (1998). The length of the magnetotail for northward IMF: Results of 3D MHD simulations. In Chang, T. and Jasperse, J. R., editors, Physics of Space Plasmas, Vol. 15, pages 121–128. Mass. Inst. of Technol. Center for Theoretical Geo/Cosmo Plasma Physics, Cambridge, Mass.

    Google Scholar 

  • Guyodo, Y. and Valet, J. P. (1999). Global changes in intensity of the earths magnetic field during the 800 kyr. Nature, 399:249–252.

    Article  Google Scholar 

  • Hauglustaine, D. and Gerard, J.-C. (1990). Possible composition and climatic changes due to past intense energetic particle precipitation. Ann. Geophys., 8:87–96.

    Google Scholar 

  • Hill, T. W., Dessler, A. J., and Wolf, R. A. (1976). Mercury and Mars – The role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophys. Res. Lett., 3:429–432.

    Article  Google Scholar 

  • Jackman, C., DeLand, M., Labow, G., Fleming, E., Weisenstein, D., Ko, M., Sinnhuber, M., Anderson, J., and Russell, J. (2005a). The influence of the several very large solar proton events in years 2000–2003 on the neutral middle atmosphere. Adv. Space Res., 35:445–450.

    Article  Google Scholar 

  • Jackman, C., Douglass, A., Rood, R., McPeters, R., and Meade, P. (1990). Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using a two-dimensional model. J. Geophys. Res., 95:7417–7428.

    Article  Google Scholar 

  • Jackman, C. H., DeLand, M. T., Labow, G. J., Fleming, E. L., Weisenstein, D. K., Ko, M. K. W., Sinnhuber, M., and Russell, J. M. (2005b). Neutral atmospheric influences of the solar proton events in October-November 2003. J. Geophys. Res., 110:A09S27.

    Article  Google Scholar 

  • Jackman, C. H., Fleming, E. L., and Vitt, F. M. (2000). Influence of extremely large solar proton events in a changing stratosphere. J. Geophys. Res., 105:11 659–11 670.

    Google Scholar 

  • Jackman, C. H., McPeters, R. D., Labow, G. J., Praderas, C. J., and Fleming, E. L. (2001). Measurements and model predictions of the atmospheric effects due to the july 2000 solar proton event. Geophys. Res. Lett., 28:2883.

    Article  Google Scholar 

  • Jackson, A. (1995). Storm in a lava flow? Nature, 377:685–686.

    Article  Google Scholar 

  • Kabin, K., Gombosi, T. I., DeZeeuw, D. L., and Powell, K. G. (2000). Interaction of mercury with the solar wind. Icarus, 143:397–406.

    Article  Google Scholar 

  • Kallenrode, M.-B. (1998). Space Physics: An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. Springer-Verlag, Berlin.

    Google Scholar 

  • Kallenrode, M.-B. (2003). Current views on impulsive and gradual solar energetic particle events. J. Phys. G, 29:965.

    Article  Google Scholar 

  • Kallenrode, M.-B., Cliver, E. W., and Wibberenz, G. (1992). Composition and azimuthal spread of solar energetic particles from impulsive and gradual flares. Astro. Phys. J., 391:370.

    Article  Google Scholar 

  • Kinnersley, J. (1996). The climatology of the stratospheric thin air model. Q.J.R. Meteorol. Soc., 122:219–252.

    Google Scholar 

  • Krillke, C. (2006). Teilcheneinfall in der Polkappe. Diploma thesis, University of Osnabrück.

    Google Scholar 

  • Lary, D. (1997). Catalytic destruction of stratospheric ozone. J. Geophys. Res., 102:21515–21526.

    Article  Google Scholar 

  • Lemaire, J. F., Heyndrerickx, D., and (eds.), D. N. B. (1997). Radiation belts – models and standards. American Geophysical Union, Washington.

    Google Scholar 

  • Leonhardt, R. and Fabian, K. (2007). Paleomagnetic reconstruction of the global geomagnetic field evolution during the matuyama/brunhes transition: Iterative bayesian inversion and independent verification. Earth Planet. Sci. Lett., 253:172–195.

    Article  Google Scholar 

  • Leske, R. A., Mewaldt, R. A., Stone, E. C., and von Rosenvinge, T. T. (2001). Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. J. Geophys. Res., 106:30011–30022.

    Article  Google Scholar 

  • Leubner, M. P. and Zollner, K. (1985). The quadrupole magnetopause. J. Geophys. Res., 90:8265–8268.

    Article  Google Scholar 

  • McCracken, K. G., Dreschhoff, G. A. M., Smart, D. F., and Shea, M. (2001a). Solar cosmic ray events for the period 1561–1994, (2) the gleissberg periodicity. J. Geophys. Res., 106:21 599–21 609.

    Google Scholar 

  • McCracken, K. G., Dreschhoff, G. A. M., Zeller, E. J., Smart, D. F., and Shea, M. A. (2001b). Solar cosmic ray events for the period 1561–1994, (1) identification in polar ice. J. Geophys. Res., 106:21 585–21 598.

    Google Scholar 

  • McElhinny, M. W. and Senanayake, W. E. (1982). Variations in the geomagnetic dipole. I – the past 50,000 years. J. Geomagn. Geoelectr., 34:39–51.

    Google Scholar 

  • McKibben, R. B. (1987). Galactic cosmic rays and anomalous components in the heliosphere. Rev. Geophys., 25(3):711.

    Article  Google Scholar 

  • Melott, A., Thomas, B., Hogan, D., Ejzak, L., and Jackman, C. (2005). Climatic and biogeochemical effects of a galactic gamma ray burst. Geophys. Res. Lett., 32:L14808.

    Article  Google Scholar 

  • Merrill, R. T. and McFadden, P. L. (1999). Geomagnetic polarity transitions. Rev. Geophys., 37:201–226.

    Article  Google Scholar 

  • Pavlov, A.A., Pavlov, A.K., Mills, M.J., Ostryakov, V.M., Vasiljev, G.I., and Toon, O.B. (2005). Catastrophic ozone loss during passage of the solar system through an interstellar cloud. Geophys. Res. Lett., 32:L01815.

    Article  Google Scholar 

  • Poppenburg, J. (2006). Simulation of the solar cycle based on a probabilistic cellular automaton. BA thesis, University of Osnabrück.

    Google Scholar 

  • Porter, H. S., Jackman, C. H., and Green, A. E. S. (1976). Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J. Chem. Phys., 65:154–167.

    Article  Google Scholar 

  • Prinn, R. and B. Fegley, J. (1987). Bolide impacts, acid rain, and biospheric traumas at the cretaceous-tertiary boundary. Earth Planet. Sci. Lett., 83:1–15.

    Article  Google Scholar 

  • Quack, M., Kallenrode, M.-B., von König, M., Künzi, K., Burrows, J., Heber, B., and Wolff, E. (2001). Ground level events and consequences for stratospheric chemistry. In Proceedings of ICRC 2001. Copernicus Gesellschaft.

    Google Scholar 

  • Randall, C. E., Siskind, D. E., and Bevilacqua, R. M. (2001). Stratospheric NO$x$ enhancements in the southern hemisphere vortex in winter/spring of 2000. Geophys. Res. Lett., 28:2385–2388.

    Article  Google Scholar 

  • Reames, D. V. (1999). Particle acceleration at the sun and in the heliosphere. Space Sci. Rev., 90:413.

    Article  Google Scholar 

  • Reid, G., Isaksen, I., Holzer, T., and Crutzen, P. (1976). Influence of ancient solar-proton events on the evolution of life. Nature, 259:177–179.

    Article  Google Scholar 

  • Rishbeth, H. (1985). The quadrupole ionosphere. Ann. Geophys., 3:293–298.

    Google Scholar 

  • Roelof, E. C. and Sibeck, D. G. (1993). Magnetopause shape as a bivariate function of interplanetary magnetic field $Bz$ and solar wind dynamic pressure. J. Geophys. Res., 98:21421.

    Article  Google Scholar 

  • Rohen, G., von Savigny, C., Sinnhuber, M., Llewellyn, E. J., Kaiser, J. W., Jackman, C. H., Kallenrode, M.-B., Schröter, J., Eichmann, K.-U., Bovensmann, H., and Burrows, J. P. (2005). Ozone depletion during the solar proton events of October/November 2003 as seen by SCIAMACHY. J. Geophys. Res., 110:A09S39.

    Article  Google Scholar 

  • Russell, C. T. (2001). Solar wind and interplanetary magnetic field: a tutorial. In Song, P., Singer, H. J., and Siscoe, G. L., editors, Space Weather Geophys. Monogr. Ser., Volume 125, pp. 71. AGU, Washington, D.C.

    Google Scholar 

  • Saito, T., Sakurai, T., and Yumoto, K. (1978). The Earth’s palaeomagnetosphere as the third type of planetary magnetosphere. Planet. Space Sci., 26:413–422.

    Article  Google Scholar 

  • Sander et al., S. S. (2000). Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation no 13. JPL Publications, 00-3.

    Google Scholar 

  • Sander et al., S. S. (2006). Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation no 15. JPL Publications, 06-2.

    Google Scholar 

  • Schröter, J., Heber, B., Steinhilber, F., and Kallenrode, M. B. (2006). Energetic particles in the atmosphere: A Monte-carlo simulation. Adv. Space Res., 37:1597–1601.

    Article  Google Scholar 

  • Schwenn, R. (1990). Large-scale structure of the interplanetary medium. In Schwenn, R. and Marsch, E., editors, Physics of the inner heliosphere, Volume 1, pp. 99. Springer, Berlin.

    Google Scholar 

  • Shea, M. A., Smart, D. F., and McCracken, K. G. (1965). A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res., 70:4117.

    Article  Google Scholar 

  • Siebert, M. (1977). Auswirkungen der säkularen Änderung des erdmagnetischen Hauptfeldes auf Form und Lage der Magnetosphäre und die Stärke der erdmagnetischen Aktivität. Abh. Braunschweig. Wiss. Ges., 37:281–319.

    Google Scholar 

  • Sinnhuber, M., Burrows, J. P., Chipperfield, M. P., Jackman, C. H., Kallenrode, M.-B., Künzi, K. F., and Quack, M. (2003). A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophys. Res. Lett., 30:1818–1821.

    Article  Google Scholar 

  • Siscoe, G. L. (1979). Towards a comparative theory of magnetospheres. In Solar System Plasma Physics, Volume II, pp. 319–402. North-Holland Publ. Comp.

    Google Scholar 

  • Siscoe, G. L. and Chen, C.-K. (1975). The paleomagnetosphere. J. Geophys. Res., 80:4675–4680.

    Article  Google Scholar 

  • Siscoe, G. L. and Crooker, N. J. (1976). Auroral zones in a quadrupole magnetosphere. J. Geomagn. Geoelectr., 28:1–9.

    Google Scholar 

  • Siscoe, G. L., Erickson, G. M., Sonnerup, B. U. ö., Maynard, N. C., Schoendorf, J. A., Siebert, K. D., Weimer, D. R., White, W. W., and Wilson, G. R. (2002). Hill model of transpolar potential saturation: Comparisons with MHD simulations. J. Geophys. Res., 107:1075.

    Article  Google Scholar 

  • Smart, D. F. and Shea, M. A. (1972). Daily variation of electron and proton geomagnetic cutoffs calculated for fort churchill, Canada. J. Geophys. Res., 77:4595–4601.

    Article  Google Scholar 

  • Smart, D. F. and Shea, M. A. (2001). A comparison of the tsyganenko model predicted and measured geomagnetic cutoff latitudes. Adv. Space Res., 28:1733–1738.

    Article  Google Scholar 

  • Smart, D. F. and Shea, M. A. (2005). A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft. Adv. Space Res., 36:2012–2020.

    Article  Google Scholar 

  • Smart, D. F., Shea, M. A., and Flückiger, E. O. (2000). Magnetospheric Models and Trajectory Computations. Space Sci. Rev., 93:305–333.

    Article  Google Scholar 

  • Solomon, S., Reid, G. C., Rusch, D. W., and Thomas, R. J. (1983). Mesospheric ozone depletion during the solar proton event of July 13, 1982. II – Comparison between theory and measurements. Geophys. Res. Lett., 10:257–260.

    Article  Google Scholar 

  • Solomon, S., Rusch, D. W., Gérard, J. C., Reid, G. C., and Crutzen, P. J. (1981). The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planet. Space Sci., 29:885–893.

    Article  Google Scholar 

  • Solomon, S. C. (2001). Auroral particle transport using monte-carlo and hybrid methods. J. Geophys. Res., 106:107.

    Article  Google Scholar 

  • Stadelmann, A. (2004). Globale Effekte einer Erdmagnetfeldumkehr: Magnetosphärenstruktur und kosmische Teilchen. Dissertation, Technische Universität Braunschweig.

    Google Scholar 

  • Starchenko, S. and Shcherbakov, V. (1991). Inverse magnetosphere. Doktorlady Akademii Nauk SSSR, 321. in Russian.

    Google Scholar 

  • Steinhilber, F. (2005). Simulation der solaren Aktivität auf Zeitskalen von Solarzyklen bis zu Jahrhunderten. Diploma thesis, University of Osnabrück.

    Google Scholar 

  • Stephenson, J. A. E. and Scourfield, M. W. J. (1992). Ozone depletion over the polar caps caused by solar protons. Geophys. Res. Lett., 19:2425–2428.

    Article  Google Scholar 

  • Størmer, C. (1955). The Polar Aurora. Clarendon Press, Oxford.

    Google Scholar 

  • Svensmark, H. (2000). Cosmic rays and earth’s climate. Space Sci. Rev., 93:175–185.

    Article  Google Scholar 

  • Svensmark, H. and Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationship,. J. Atm. Solar-Terr. Phys., 59:1225–1232.

    Article  Google Scholar 

  • Swider, W. and Keneshea, T. (1973). Decrease of ozone and atomic oxygen in the lower mesosphere during a pct event. Planet. Space Sci., 21:1969–1973.

    Article  Google Scholar 

  • Toon, O. (1997). Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys., 35:41– 8.

    Article  Google Scholar 

  • Ultré-Guérard, P. and Achache, J. (1995). Core flow instabilities and geomagnetic storms during reversals: The Steens Mountain impulsive field variations revisited. Earth Planet. Sci. Lett., 135:91–99.

    Article  Google Scholar 

  • Usoskin, I. G., Marsh, N., Kovaltsov, G. A., Mursula, K., and Gladysheva, O. G. (2004). Latitudinal dependence of low cloud amount on cosmic ray induced ionization. Geophys. Res. Lett., 31:L16109.

    Article  Google Scholar 

  • Vitt, F. M. and Jackman, C. H. (1996). A comparison of sources of odd nitrogen production from 1974 through 1993 in the earth’s middle atmosphere as calculated using a two-dimensional model. J. Geophys. Res., 101:6729.

    Article  Google Scholar 

  • Vogt, J. and Glassmeier, K.-H. (2000). On the location of trapped particle populations in quadrupole magnetospheres. J. Geophys. Res., 105:13,063–13,071.

    Google Scholar 

  • Vogt, J. and Glassmeier, K.-H. (2001). Modelling the paleomagnetosphere: strategy and first results. Adv. Space Res., 28:863–868.

    Article  Google Scholar 

  • Vogt, J., Zieger, B., Glassmeier, K.-H., Stadelmann, A., Kallenrode, M.-B., Sinnhuber, M., and Winkler, H. (2007). Energetic particles in the paleomagnetosphere: reduced dipole configurations and quadrupolar contributions. J. Geophys. Res., 112:6216, doi:10.1029/2006JA012224.

    Article  Google Scholar 

  • Vogt, J., Zieger, B., Stadelmann, A., Glassmeier, K.-H., Gombosi, T. I., Hansen, K. C., and Ridley, A. J. (2004). MHD simulations of quadrupolar paleomagnetospheres. J. Geophys. Res., 109:A12221.

    Article  Google Scholar 

  • Voigt, G.-H., Behannon, K. W., and Ness, N. F. (1987). Magnetic field and current structures in the magnetosphere of Uranus. J. Geophys. Res., 92:15,337–15,346.

    Google Scholar 

  • Voigt, G.-H. and Ness, N. F. (1990). The magnetosphere of Neptune: its response to daily rotation. Geophys. Res. Lett., 17:1705–1708.

    Article  Google Scholar 

  • Walt, M. (1994). Introduction to geomagnetically trapped radiation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wendler, J. (2004). External forcing of the geomagnetic field ? implications for the cosmic ray flux – climate variability. J. Atm. Terr. Phys., 66:1195–1203.

    Article  Google Scholar 

  • Williams, I. and Fuller, M. (1981). Zonal harmonic models of reversal transition fields. J. Geophys. Res., 86:11,657–11,665.

    Google Scholar 

  • Willis, D. M., Holder, A. C., and Dais, C. J. (2000). Possible configurations of the magnetic field in the outer magnetosphere during geomagnetic polarity reversals. Ann. Geophys., 18:11–27.

    Article  Google Scholar 

  • Winkler, H., Sinnhuber, M., Notholt, J., Kallenrode, M.-B., Steinhilber, F., Vogt, J., Zieger, B., Glassmeier, K.-H., and Stadelmann, A. (2008a). Modelling impacts of geomagnetic field variations on middle atmospheric responses to solar proton events on long time scales. J. Geophys. Res., 13:2302, doi:10.1029/2007JD008574.

    Article  Google Scholar 

  • Wissing, J. M. (2005). Räumliche und zeitliche Verteilung prezipierender magnetosphärischer Teilchen. Diploma thesis, University of Osnabrück.

    Google Scholar 

  • Wissing, J. M., Bornebusch, J. P., and Kallenrode, M.-B. (2008a). Variation of energetic particle precipitation with local magnetic time. Adv. Space Res., 41:1274–1278.

    Article  Google Scholar 

  • Wissing, J. M., Sinnhuber, M., Winkler, H., and Kallenrode, M.-B. (2008b). Total inventory of precipitating particles and atmospheric consequences: October/November 2003 revisited. Geophys. Res. Lett., submitted.

    Google Scholar 

  • World Meteorological Organisation (2000). Scientific Assessment of Ozone Depletion: 1999. WMO.

    Google Scholar 

  • World Meteorological Organisation (2003). Scientific Assessment of Ozone Depletion: 2002. WMO.

    Google Scholar 

  • Zieger, B., Vogt, J., and Glassmeier, K.-H. (2006a). Scaling relations in the paleomagnetosphere derived from MHD simulations. J. Geophys. Res., 111:A06203.

    Article  Google Scholar 

  • Zieger, B., Vogt, J., Glassmeier, K.-H., and Gombosi, T. I. (2004). Magnetohydrodynamic simulation of an equatorial dipolar paleomagnetosphere. J. Geophys. Res., 109:A07205.

    Article  Google Scholar 

  • Zieger, B., Vogt, J., Ridley, A. J., and Glassmeier, K.-H. (2006b). A parametric study of magnetosphere-ionosphere coupling in the paleomagnetosphere. Adv. Space Res., 38:1707–1712.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogt, J., Sinnhuber, M., Kallenrode, MB. (2009). Effects of Geomagnetic Variations on System Earth. In: Geomagnetic Field Variations. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76939-2_5

Download citation

Publish with us

Policies and ethics