Skip to main content

The Recent Geomagnetic Field and its Variations

  • Chapter
Geomagnetic Field Variations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrescu, M., Gibert, D., Hulot, G., Mouël, J.-L. L., and Saracco, G. (1995). Detection of geomagnetic jerks using wavelet analysis. J. Geophys. Res., 100:12557–12572.

    Article  Google Scholar 

  • Alexandrescu, M., Gibert, D., Hulot, G., Mouël, J.-L. L., and Saracco, G. (1996). Worldwide wavelet analysis of geomagnetic jerks. J. Geophys. Res., 101:21975–21994.

    Article  Google Scholar 

  • Arkani-Hamed, J., Langel, R., and Purucker, M. (1994). Scalar magnetic anomaly maps of the Earth derived from POGO and Magsat data. J. Geophys. Res., 99:24,075–24,090.

    Google Scholar 

  • Bellanger, E., Mouël, J.-L. L., Mandea, M., and Labrosse, S. (2001). Chandler wobble and geomagnetic jerks. Phys. Earth Planet. Int., 124:95–103.

    Article  Google Scholar 

  • Bloxham, J. and Gubbins, D. (1985). The secular variation of the Earth’s magnetic field. Nature, 317:777–781.

    Article  Google Scholar 

  • Bloxham, J. and Jackson, A. (1992). Time-dependent mapping of the magnetic field at the core-mantle boundary. J. Geophys. Res., 97:19,537–19,563.

    Google Scholar 

  • Bloxham, J., Zatman, S., and Dumberry, M. (2002). The origin of geomagnetic jerks. Nature, 420(6911):65–68.

    Article  Google Scholar 

  • Cain, J., Wang, Z., Kluth, C., and Schmitz, D. (1989). Derivation of a geomagnetic model to n = 63. Geophys. J. Int., 97:431–441.

    Article  Google Scholar 

  • Campbell, W. (1989). The regular geomagnetic field variations during quiet solar conditions. In Jacobs, J. A., editor, Geomagnetism, volume 3, pp. 385–460. Academic Press, Orlando.

    Google Scholar 

  • Cohen, Y. and Achache, J. (1990). New global vector magnetic anomaly maps derived from Magsat data. J. Geophys. Res., 95:10783–10800.

    Article  Google Scholar 

  • Constable, C. and Korte, M. (2006). Is Earth’s magnetic field reversing? Earth Planet. Sci. Lett., 246:1–16.

    Article  Google Scholar 

  • Constable, C. G., Johnson, C. L., and Lund, S. P. (2000). Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes? Phil. Trans. R. Soc. Lond. A, 358:991–1008.

    Article  Google Scholar 

  • Courtillot, V., Ducroix, J., and Mouël, J.-L. L. (1978). Sur une accélération récente du la variation séculaire du champ magnétique terrestre. C.R. Acad. Sci. Paris Ser. D, 287:1095–1098.

    Google Scholar 

  • European Space Agency (1997). The Hipparcos and Tycho Catalogues. ESA SP-1200.

    Google Scholar 

  • Finlay, C., Jackson, A., and Gillet, N. (2006). An updated version of the historical field model gufm1. In 10th Symposium on Study of the Earth’s Deep Interior, p. 68.

    Google Scholar 

  • Forbes, J. (1981). The equatorial electrojet. Rev. Geophys., 19:469–504.

    Article  Google Scholar 

  • Gauss, C. (1833). Intensitas vis magneticae terrestris ad mensuram absolutam revocata. Sumtibus Dieterichianis, Göttingen.

    Google Scholar 

  • Gauss, C. (1839). Allgemeine Theorie des Erdmagnetismus. In Resultate aus den Beobachtungen des Magnetischen Verein im Jahre 1838, pp. 1–52. Göttinger Magnetischer Verein, Leipzig.

    Google Scholar 

  • Glassmeier, K. H. (1987). Ground-based observations of field-aligned currents in the auroral zone - Methods and results. Ann. Geophys., 5:115–125.

    Google Scholar 

  • Gubbins, D. (1987). Mechanism for geomagnetic polarity reversals. Nature, 326:167–169.

    Article  Google Scholar 

  • Gubbins, D. and Bloxham, J. (1985). Geomagnetic field analysis - III. Magnetic fields on the core-mantle boundary. Geophys. J. R. Astron. Soc., 80:695–713.

    Google Scholar 

  • Gubbins, D., Jones, A., and Finlay, C. (2006). Fall in Earth’s magnetic field is erratic. Science, 312:900–902.

    Article  Google Scholar 

  • Hamoudi, M., Thebault, E., Lesur, V., and Mandea, M. (2007). Geo-ForschungsZentrum Anomaly Magnetic MAp (GAMMA): A candidate model for the World Digital Magnetic Anomaly Map. Geochem., Geophys., Geosys., 8, Q06023:doi:10.1029/2007GC001638.

    Google Scholar 

  • Heirtzler, J., Allen, J., and Wilkinson, D. (2002). Ever-present South Atlantic Anomaly damages spacecraft. EOS, Trans. AGU, 83:165.

    Article  Google Scholar 

  • Hemant, K. (2003). Modelling and interpretation of global lithospheric magnetic anomalies. PhD thesis, Freie Univ., Berlin.

    Google Scholar 

  • Hemant, K. and Maus, S. (2005). Geological modeling of the new CHAMP magnetic anomaly maps using a Geographical Information System (GIS) technique. J. Geophys. Res., B, 110, B12103:doi:10.1029/2005JB003837.

    Google Scholar 

  • Holme, R. and de Viron, O. (2005). Geomagnetic jerks and a high-resolution lenght-of-day profile for core studies. Geophys. J. Int., 160:435–439.

    Article  Google Scholar 

  • Holme, R., Olsen, N., Rother, M., and Lühr, H. (2003). CO2: A CHAMP magnetic field model. In Reigber, C., Lühr, H., and Schwintzer, P., editors, First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, pp. 220–225. Springer, Berlin - Heidelberg.

    Google Scholar 

  • Hulot, G., Eymin, C., Langlais, B., Mandea, M., and Olsen, N. (2002). Small-scale structure of the geodynamo inferred from Ørsted and Magsat satellite data. Nature, 416:620–623.

    Article  Google Scholar 

  • Huy, M. L., Mandea, M., Mouël, J.-L. L., and Pais, A. (2000). Time evolution of the fluid flow at the top of the core. Geomagnetic jerks. Earth, Planets, Space, 52:163–173.

    Google Scholar 

  • IAGA Working Group V-MOD (2005). The 10th generation international geomagnetic reference field. Geophys. J. Int., 161:561–656.

    Google Scholar 

  • Jackson, A. (1994). Statistical treatment of crustal magnetization. Geophys. J. Int., 119:991–998.

    Article  Google Scholar 

  • Jackson, A., Jonkers, A., and Walker, M. (2000). Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. Lond. A, 358:957–990.

    Article  Google Scholar 

  • Jankowski, J. and Sucksdorff, C. (1996). IAGA guide for magnetic measurements and observatory practice. IAGA.

    Google Scholar 

  • Kan, J. and Lee, L. (1979). Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett., 6:577–580.

    Article  Google Scholar 

  • Kelley, M. (1989). The Earth’s Ionosphere. Elsevier, New York.

    Google Scholar 

  • Korhonen, J., Fairhead, J., Hamoudi, M., Hemant, K., Lesur, V., Mandea, M., Maus, S., Purucker, M., Ravat, D., Sazonova, T., and Thebault, E. (2007). Magnetic Anomaly Map of the World. Map published by Commission for Geological Map of the World supported by UNESCO, 1st Edition.

    Google Scholar 

  • Korte, M. and Constable, C. (2006). Centennial to millennial geomagnetic variation. Geophys. J. Int., 167:43–52.

    Article  Google Scholar 

  • Korte, M., Constable, C., and Parker, R. (2002). Revised magnetic power spectrum of the oceanic crust. J. Geophys. Res., 107, B9, 2205:doi:10.1029/2001JB001389.

    Article  Google Scholar 

  • Korte, M. and Constable, C. G. (2005). Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochem., Geophys., Geosys., 6, Q02H16:doi:10.1029/2004GC000801.

    Google Scholar 

  • Kuvshinov, A. and Olsen, N. (2005). 3-D modelling of the magnetic field due to ocean tidal flow. In Reigber, C., Lühr, H., Schwintzer, P., and Wickert, J., editors, Earth Observation with CHAMP, Results from Three Years in Space, pp. 359–365. Springer, Berlin - Heidelberg.

    Google Scholar 

  • Langel, R. (1987). The main field. In Jacobs, J. A., editor, Geomagnetism, Vol. 1, pp. 249–512. Academic Press, Orlando.

    Google Scholar 

  • Langel, R. and Estes, R. (1985a). Large-scale, near-Earth magnetic field from external sources and the corresponding induced internal field. J. Geophys. Res., 90:2487–2494.

    Article  Google Scholar 

  • Langel, R. and Estes, R. (1985b). The near-Earth magnetic field at 1980 determined from Magsat data. J. Geophys. Res., 90:2495–2509.

    Article  Google Scholar 

  • Langel, R. and Hinze, W. (1998). The Magnetic Field of the Earth’s Lithoshpere: The Satellite Perspective. Cambridge Univ. Press.

    Google Scholar 

  • Langlais, B., Mandea, M., and Ultré-Guérard, P. (2003). High-resolution magnetic field modeling: Application to MAGSAT and Ørsted data. Phys. Earth Planet. Int., 135:77–92.

    Article  Google Scholar 

  • Lowe, D. A. J., Parker, R. L., Purucker, M. E., and Constable, C. G. (2001). Estimating the crustal power spectrum from vector Magsat data. J. Geophys. Res., 106:8589–8598.

    Article  Google Scholar 

  • Lühr, H., Maus, S., and Rother, M. (2004). The noon-time equatorial electrojet, its spatial features as determined by the CHAMP satellite. J. Geophys. Res., 109, A01306:doi:10.1029/2002JA009656.

    Google Scholar 

  • Lühr, H., Maus, S., Rother, M., and Cooke, D. (2002). First in-situ observation of night-time F region currents with the CHAMP satellite. Geophys. Res. Lett., 29(10):doi:10.1029/2001GL013845.

    Google Scholar 

  • Lühr, H., Rother, M., Maus, S., Mai, W., and Cooke, D. (2003). The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and impact on geomagnetic field modelling. Geophys. Res. Lett., 30(17):doi:10.1029/2003GL017407.

    Google Scholar 

  • Macmillan, S. (1996). A geomagnetic jerk for the early 1990’s. Earth Planet. Sci. Lett., 137:189–192.

    Article  Google Scholar 

  • Malin, S. and Hodder, B. (1982). Was the 1970 jerk of internal or external origin? Nature, 296:726–728.

    Article  Google Scholar 

  • Mandea, M., Bellanger, E., and Mouël, J.-L. L. (2000). A geomagnetic jerk for the end of the 20th century? Earth Planet. Sci. Lett., 183:369–373.

    Article  Google Scholar 

  • Manoj, C., Lühr, H., Maus, S., and Nagarajan, N. (2006). Evidence for short spatial correlation lengths of the noon-time equatorial electrojet – inferred from a comparison of satellite and ground magnetic data. J. Geophys. Res., 111, A11312:doi:10.1029/2006JA011855.

    Article  Google Scholar 

  • Maus, S. and Lühr, H. (2005). Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction. Geophys. J. Int., doi:10.1111/j.1365–246X.2005.02691.x.

    Google Scholar 

  • Maus, S. and Lühr, H. (2006). A gravity-driven electric current in the Earth’s ionosphere identified in CHAMP satellite magnetic measurements. Geophys. Res. Lett., 33, L02812:doi:10.1029/2005GL024436.

    Article  Google Scholar 

  • Maus, S., Lühr, H., Balasis, G., Rother, M., and Mandea, M. (2005). Introducing POMME, the Potsdam Magnetic Model of the Earth. In Reigber, C., Lühr, H., Schwintzer, P., and Wickert, J., editors, Earth Observation with CHAMP, Results from Three Years in Space, pp. 293–298. Springer, Berlin - Heidelberg.

    Chapter  Google Scholar 

  • Maus, S., Lühr, H., Hemant, K., Balasis, G., Ritter, P., and Stolle, C. (2007). Fifth generation lithospheric magnetic field model from CHAMP satellite measurements. Geochem. Geophys. Geosys., 8, Q05013:doi:10.1029/2006GC001521.

    Article  Google Scholar 

  • Maus, S., Rother, M., Holme, R., Lühr, H., Olsen, N., and Haak, V. (2002). First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field. Geophys. Res. Lett., 29(14):doi:10.1029/2001GL013685.

    Google Scholar 

  • Maus, S., Rother, M., Stolle, C., Mai, W., Choi, S.-C., Lühr, H., Cooke, D., and Roth, C. (2006). Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochem. Geophys. Geosyst., 7, Q07008:doi:10.1029GC001269.

    Article  Google Scholar 

  • Maus, S. and Weidelt, P. (2004). Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the earth. Geophys. Res. Lett., 31, L12614:doi:10.1029/2004GL020232.

    Article  Google Scholar 

  • Mayer, C. and Maier, T. (2006). Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int., 167:1188–1203.

    Article  Google Scholar 

  • McCarthy, D. (1996). IERS conventions. IERS Technical Notes 21, U.S. Naval Observatory.

    Google Scholar 

  • Meyer, J., Hufen, J., Siebert, M., and Hahn, A. (1983). Investigations of the internal geomagnetic field by means of a global model of the Earth’s crust. J. Geophys., 52:71–84.

    Google Scholar 

  • Neubert, T., Mandea, M., Hulot, G., von Freese, R., Primdahl, F., Jørgensen, J., Friis-Christensen, E., Stauning, P., Olsen, N., and Risbo, T. (2001). Ørsted satellite captures high-precision geomagnetic field data. EOS, Trans., AGU, 82:81.

    Article  Google Scholar 

  • O’Brien, M. S., Parker, R. L., and Constable, C. G. (1999). Magnetic power spectrum of the ocean crust on large scales. J. Geophys. Res., 104:29,189–29,201.

    Google Scholar 

  • Olsen, N. (2002). A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Ørsted data. Geophys. J. Int., 149:454–462.

    Article  Google Scholar 

  • Olsen, N., Holme, R., Hulot, G., Sabaka, T., Neubert, T., Tøffner-Clausen, L., Primdahl, F., Jørgensen, J., Léger, J.-M., Barraclough, D., Bloxham, J., Cain, J., Constable, C., Golovkov, V., Jackson, A., Kotzé, P., Langlais, B., Macmillan, S., Mandea, M., Merayo, J., Newitt, L., Purucker, M., Risbo, T., Stampe, M., Thomson, A., and Voorhies, C. (2000). Ørsted Initial Field Model. Geophys. Res. Lett., 27(22):3607–3610.

    Article  Google Scholar 

  • Olsen, N., Lowes, F., and Sabaka, T. (2005a). Ionospheric and induced field leakage in geomagnetic field models, and derivation of candidate models for DGRF 1995 and DGRF 2000. Earth Planet Space, 57:1191–1196.

    Google Scholar 

  • Olsen, N., Lühr, H., Sabaka, T., Mandea, M., Rother, M., Tøffner-Clausen, L., and Choi, S. (2006). CHAOS – A model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int., 166(1):67–75.

    Article  Google Scholar 

  • Olsen, N. and Mandea, M. (2007). Investigation of a secular variation impulse in satellite data: The 2003 geomagnetic jerk. Earth Planet. Sci. Lett., 255:94–105.

    Article  Google Scholar 

  • Olsen, N., Sabaka, T., and Lowes, F. (2005b). New parameterisation of external and induced fields in geomagnetic field modelling, and a candidate model for IGRF 2005. Earth Planet Space, 57:1141–1149.

    Google Scholar 

  • Olsen, N., Tøffner-Clausen, L., Sabaka, T., P. Brauer, J. M., Jørgensen, J., Léger, J.-M., Nielsen, O., Primdahl, F., and Risbo, T. (2003). Calibration of the Ørsted vector magnetometer. Earth, Plants, Space, 55:11–18.

    Google Scholar 

  • Olson, P. (2002). The disappearing dipole. Nature, 416:591–594.

    Article  Google Scholar 

  • Paschmann, G., Haarland, S., and Treumann, R., editors (2003). Auroral Plasma Physics, Space Sci. Rev., 103/1–4.

    Google Scholar 

  • Purucker, M., Langel, R., Rajaram, M., and Raymond, C. (1989). Global magnetization models with a priori information. J. Geophys. Res., 103:2563–2584.

    Article  Google Scholar 

  • Ravat, D., Langel, R. A., Purucker, M., Arkani-Hamed, J., and Alsdorf, D. E. (1995). Global vector and scalar Magsat magnetic anomaly data. J. Geophys. Res., 100:20,111–20,136.

    Article  Google Scholar 

  • Ravat, D. and Purucker, M. (2003). Unraveling the magnetic mystery of the earth’s lithosphere. In Reigber, C., Lühr, H., and Schwintzer, P., editors, First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, pp. 251–260, Berlin - Heidelberg. Springer.

    Google Scholar 

  • Reigber, C., Lühr, H., and Schwintzer, P. (2002). CHAMP mission status. Adv. Space Res., 30(2):129–134.

    Article  Google Scholar 

  • Ritter, P. and Lühr, H. (2006). Search for magnetically quite CHAMP polar passes and the characteristics of ionospheric currents during the dark season. Ann. Geophys., 24:2997–3009.

    Google Scholar 

  • Ritter, P., Lühr, H., Maus, S., and Villianen, A. (2004a). High-latitude ionospheric currents during very quiet times: Their characteristics and predictability. Ann. Geophys., 22:2001–2014.

    Article  Google Scholar 

  • Ritter, P., Lühr, H., Viljanen, A., Amm, O., Pulkkinen, A., and Sillanpää (2004b). Ionospheric currents estimated simultaneously from CHAMP satellite and IMAGE ground-based magnetic field measurements: A statistical study at auroral latitudes. Ann. Geophys., 22:417–430.

    Google Scholar 

  • Sabaka, T. and Baldwin, R. (1993). Modeling the Sq magnetic field from POGO and Magsat satellite and contemporaneous hourly observatory data: Phase I. Contract report HSTX 9302, Hughes STX Corp. for NASA/GSFC Contract NAS5-31 760.

    Google Scholar 

  • Sabaka, T. J., Olsen, N., and Purucker, M. E. (2004). Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int., 159:521–547.

    Article  Google Scholar 

  • Sillanpää, I., Lühr, H., Villianen, A., and Ritter, P. (2004). Quiet-time magnetic variations at high latitude observatories. Earth Planets Space, 56:47–65.

    Google Scholar 

  • Stolle, C., Lühr, H., Rother, M., and Balasis, G. (2006). Magnetic signatures of equatorial spread F, as observed by the CHAMP satellite. J. Geophys. Res., 111, A02304:doi:10.1029/ 2005JA011184.

    Article  Google Scholar 

  • Sugiura, M. (1965). Hourly values of equatorial DST for the IGY. Ann. Int. Geophys. Year, 35:9–45.

    Google Scholar 

  • Tyler, R., Maus, S., and Lühr, H. (2003). Satellite observations of magnetic fields due to ocean tidal flow. Science, 299:239–241.

    Article  Google Scholar 

  • Untiedt, J. and Baumjohann, B. (1993). Study of polar current systems using the IMS Scandinavian magnetometer array. Space Sci. Rev., 63:245–390.

    Article  Google Scholar 

  • Walker, A. and Backus, G. (1997). A six-parameter statistical model of the earth’s magnetic field. Geophys. J. Int., 130:693–700.

    Article  Google Scholar 

  • Wardinski, I. (2004). Core surface flow models from decadal and subdecadal secular variation of the main geomagnetic field. PhD thesis, Free University Berlin.

    Google Scholar 

  • Wardinski, I. and Holme, R. (2006). A time-dependent model of the Earth’s magnetic field and its secular variation for the period 1980–2000. J. Geophys. Res., 111, B12101:doi:10.1029/ 2006JB004401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lühr, H., Korte, M., Mandea, M. (2009). The Recent Geomagnetic Field and its Variations. In: Geomagnetic Field Variations. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76939-2_2

Download citation

Publish with us

Policies and ethics