Skip to main content

An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization of Large Scale Dynamic Systems

  • Conference paper
On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS (OTM 2007)

Abstract

This paper proposes an internal clock synchronization algorithm which combines the gossip-based paradigm with a nature-inspired approach coming from the coupled oscillators phenomenon. The proposed solution allows a very large number of clocks to self-synchronize without any central control, despite node departure and arrival. This addresses the needs of an emergent class of large-scale peer-to-peer applications that have to operate without any assumptions on the underlying infrastructure. Empirical evaluation shows extremely good convergence and stability under different network settings.

The work described in this paper was partially supported by CINI-Finmeccanica and the EU Project Resist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Object Management Group. Data distribution service for real-time systems specication v1.2, ptc/2006-04-09

    Google Scholar 

  2. Winfree, A.T.: J. Theoret. Biol. 16, 15 (1967)

    Google Scholar 

  3. Kuramoto, Y.: Chemical oscillations, waves and turbulence, ch. 5. Springer, Berlin (1984)

    Google Scholar 

  4. Strogatz, S.H., Mirollo, R.E.: Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies. Physica D 31, 143–168 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Satoh, K.: Computer Experiment on the Cooperative Behavior of a Network of Interacting Nonlinear Oscillators. J. Phys. Soc. Jpn. 58, 2010 (1989)

    Article  Google Scholar 

  6. Matthews, P.C., Mirollo, R.E., Strogatz, S.H.: Dynamics of a large system of coupled nonlinear oscillators. Physica D 52, 293 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daliot, A., Dolev, D., Parnas, H.: Linear Time Byzantine Self-Stabilizing Clock Synchronization, Technical Report TR2003-89, Schools of Engineering and Computer Science, The Hebrew University of Jerusalem (December 2003)

    Google Scholar 

  8. Daliot, A., Dolev, D., Parnas, H.: Self-Stabilizing Pulse Synchronization Inspired by Biological Pacemaker Networks. In: Proc. Of the Sixth Symposium on Self-Stabilizing Systems, pp. 32–48 (2003)

    Google Scholar 

  9. Dolev, S.: Possible and Impossible Self-Stabilizing Digital Clock Synchronization in General Graph. Journal of Real-Time Systems 12(1), 95–107 (1997)

    Article  Google Scholar 

  10. Herman, T., Ghosh, S.: Stabilizing Phase-Clock. Information Processing Letters 5(6), 585–598 (1994)

    Google Scholar 

  11. Cristian, F.: A probabilistic approach to distributed clock synchronization. Distributed Computing 3, 146–158 (1989)

    Article  MATH  Google Scholar 

  12. Lamport, L.: Time, clocks and ordering of events in a distributed system. Commun ACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  13. Lamport, L., Melliar-Smith, P.M.: Byzantine clock synchronization. In: Proc. 3rd Ann. ACM Symp. Principles of Distributed Computing, pp. 68–74. ACM Press, New York (1984)

    Chapter  Google Scholar 

  14. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults. Journal of the ACM 32(1), 525278 (1985)

    Article  MathSciNet  Google Scholar 

  15. Lundelius-Welch, J., Lynch, N.: A new fault-tolerant algorithm for clock synchronization. In: Proc. 3rd Ann. ACM Symp. Principles of Distrib. Computing, pp. 75–88 (1984)

    Google Scholar 

  16. Iwanicki, K., van Steen, M., Voulgaris, S.: Gossip-based Synchronization for Large Scale Decentralized Systems (2006)

    Google Scholar 

  17. Cristian, F., Fetzer, C.: Integrating Internal and External Clock Synchronization. Journal of Real Time Systems 12(2) (March 1997)

    Google Scholar 

  18. Cristian, F., Fetzer, C.: Lower bounds for convergence function based clock synchronization. In: Proceedings of the fourteenth annual ACM symposium on Principles of distributed computing, August 20-23, pp. 137–143 (1995)

    Google Scholar 

  19. Cristian, F., Aghili, H., Strong, R.: Clock synchronization in the presence of omission and performance faults, and processor joins. In: Proc. Int. Conf. Fault-Tolerant Computing, pp. 218–223 (1986)

    Google Scholar 

  20. Halpern, J., Simons, B., Strong, R.: Fault-tolerant clock synchronization. In: Proc. 3rd Ann. ACM Symp. Principles of Distrib. Computing, pp. 89–102 (1984)

    Google Scholar 

  21. Kopetz, H., Ochsenreiter, W.: Clock synchronization in distributed real-time systems. IEE Trans. Comput. 36(8), 933–940 (1987)

    Article  MATH  Google Scholar 

  22. Arvind, K.: Probabilistic Clock Synchronization in Distributed Systems. IEEE Trans. on Parallel and Distrib. Systems 5(5) (May 1994)

    Google Scholar 

  23. Mills, D.L.: Network Time Protocol (Version 1) specification and implementation. Network Working Group Report RFC-1059. University of Delaware (July 1988)

    Google Scholar 

  24. Mills, D.L.: Network Time Protocol Version 4 Reference and Implementation Guide. Electrical and Computer Engineering Technical Report 06-06-1, University of Delaware, p.83 (June 2006)

    Google Scholar 

  25. Verissimo, P., Rodrigues, L., Casimiro, A.: CesiumSpray: a Precise and Accurate Global Time Service for Large-scale Systems. Journal of Real-Time Systems 12(3), 243–294 (1997)

    Article  Google Scholar 

  26. Jelasity, M., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: The peer sampling service: experimental evaluation of unstructured gossip-based implementations. In: Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware (2004)

    Google Scholar 

  27. Baldoni, R., Marchetti, C., Virgillito, A.: Impact of WAN Channel Behavior on End-to-end Latency of Replication Protocols. In: Proceedings of European Dependable Computing Conference (2006)

    Google Scholar 

  28. Baldoni, R., Corsaro, A., Querzoni, L., Scipioni, S., Tucci-Piergiovanni, S.: An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization of Large Scale Dynamic Systems, MidLab Technical Report (February 2007), http://www.dis.uniroma1.it/~midlab

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert Meersman Zahir Tari

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baldoni, R., Corsaro, A., Querzoni, L., Scipioni, S., Tucci-Piergiovanni, S. (2007). An Adaptive Coupling-Based Algorithm for Internal Clock Synchronization of Large Scale Dynamic Systems. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS. OTM 2007. Lecture Notes in Computer Science, vol 4803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76848-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76848-7_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76846-3

  • Online ISBN: 978-3-540-76848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics