Skip to main content

Messenger RNA 3′ End Formation in Plants

  • Chapter
Nuclear pre-mRNA Processing in Plants

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 326))

Messenger RNA 3′ end formation is an integral step in the process that gives rise to mature, translated messenger RNAs in eukaryotes. With this step, a premessenger RNA is processed and polyadenylated, giving rise to a mature mRNA bearing the characteristic poly(A) tract. The poly(A) tract is a fundamental feature of mRNAs, participating in the process of translation initiation and being the focus of control mechanisms that define the lifetime of mRNAs. Thus messenger RNA 3′ end formation impacts two steps in mRNA biogenesis and function. Moreover, mRNA 3′ end formation is something of a bridge that integrates numerous other steps in mRNA biogenesis and function. While the process is essential for the expression of most genes, it is also one that is subject to various forms of regulation, such that both quantitative and qualitative aspects of gene expression may be modulated via the polyadenylation complex. In this review, the current status of understanding of mRNA 3′ end formation in plants is discussed. In particular, the nature of mRNA 3′ ends in plants is reviewed, as are recent studies that are beginning to yield insight into the functioning and regulation of plant polyadenylation factor subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CPSF:

Cleavage and polyadenylation specificity factor

CstF:

Cleavage stimulatory factor

CFIm:

Mammalian cleavage factor I

CFIy:

Yeast cleavage factor

CPF:

Yeast cleavage and polyadenylation factor

PAP:

Poly(A) polymerase

UTR:

Untranslated region

nts:

Nucleotides

FUE:

Far upstream element

NUE:

Near upstream element

CS:

Cleavage site

CE:

Cleavage element

ETR1:

Ethylene receptor 1

TIR:

Toll/interleukin-1 receptor homology domain

Fip:

Factor interacting with poly(A) polymerase

FLAG:

So-called FLAG epitope

References

  • Addepalli B, Meeks LR, Forbes KP, Hunt AG (2004) Novel alternative splicing of mRNAs encoding poly(A) polymerases in Arabidopsis. Biochim Biophys Acta 1679:117–128

    PubMed  CAS  Google Scholar 

  • Ahn SH, Kim A, Buratowski S (2004) Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol Cell 13:67–76

    PubMed  CAS  Google Scholar 

  • Alexandrov NN, Troukhan ME, Brover VV, Tatarinova T, Flavell RB, Feldmann KA (2006) Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol 60:69–85

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  CAS  Google Scholar 

  • Baillat D, Hakimi MA, Naar AM, Shilatifard A, Cooch N, Shiekhattar R (2005) Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123:265–276

    PubMed  CAS  Google Scholar 

  • Barabino SM, Ohnacker B, Keller W (2000) Distinct roles of two Yth1p domains in 3′-end cleavage and polyadenylation of yeast pre-mRNAs. EMBO J 19:3778–3787

    PubMed  CAS  Google Scholar 

  • Barnard DC, Ryan K, Manley JL, Richter JD (2004) Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119:641–651

    PubMed  CAS  Google Scholar 

  • Bassett CL, Artlip TS, Callahan AM (2002) Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Planta 215:679–688

    PubMed  CAS  Google Scholar 

  • Baynton CE, Potthoff SJ, McCullough AJ, Schuler MA (1996) U-rich tracts enhance 3′ splice site recognition in plant nuclei. Plant J 10:703–711

    PubMed  CAS  Google Scholar 

  • Beaudoing E, Gautheret D (2001) Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res 11:1520–1526

    PubMed  CAS  Google Scholar 

  • Bentley DL. 2005. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17:251–256

    PubMed  CAS  Google Scholar 

  • Bilger A, Fox CA, Wahle E, Wickens B (1994) Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev 8:1106–1116

    PubMed  CAS  Google Scholar 

  • Bond GL, Prives C, Manley JL (2000) Poly(A) polymerase phosphorylation is dependent on novel interactions with cyclins. Mol Cell Biol 20:5310–5320

    PubMed  CAS  Google Scholar 

  • Brown JW, Simpson CG (1998) Splice site selection in plant pre-mRNA splicing. Annu Rev Plant Physiol Plant Mol Biol 49:77–95

    PubMed  Google Scholar 

  • Brown PH, Tiley LS, Cullen BR (1991) Effect of RNA secondary structure on polyadenylation site selection. Genes Dev 5:1277–1284

    PubMed  CAS  Google Scholar 

  • Buratowski S (2005) Connections between mRNA 3′ end processing and transcription termination. Curr Opin Cell Biol 17:257–261

    PubMed  CAS  Google Scholar 

  • Caballero JJ, Giron MD, Vargas AM, Sevillano N, Suarez MD, Salto R (2004) AU-rich elements in the mRNA 3′-untranslated region of the rat receptor for advanced glycation end products and their relevance to mRNA stability. Biochem Biophys Res Commun 319:247–255

    PubMed  CAS  Google Scholar 

  • Calvo O, Manley JL (2003) Strange bedfellows: polyadenylation factors at the promoter. Genes Dev 17:1321–1327

    PubMed  CAS  Google Scholar 

  • Calvo O, Manley JL (2005) The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription. EMBO J24:1009–1020

    Google Scholar 

  • Chen S, Hyman LE (1998) A specific RNA-protein interaction at yeast polyadenylation efficiency elements. Nucleic Acids Res 26:4965–4974

    PubMed  CAS  Google Scholar 

  • Colgan DF, Murthy KG, Prives C, Manley JL (1996) Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384:282–285

    PubMed  CAS  Google Scholar 

  • Dass B, Attaya EN, Michelle Wallace A, MacDonald CC (2001a) Overexpression of the CstF-64 and CPSF-160 polyadenylation protein messenger RNAs in mouse male germ cells. Biol Reprod 64:1722–1729

    PubMed  CAS  Google Scholar 

  • Dass B, McMahon KW, Jenkins NA, Gilbert DJ, Copeland NG, MacDonald CC (2001b) The gene for a variant form of the polyadenylation protein CstF-64 is on chromosome 19 and is expressed in pachytene spermatocytes in mice. J Biol Chem 276:8044–8050

    PubMed  CAS  Google Scholar 

  • Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG (2006) Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit. Plant Physiol 140:1507–1521

    PubMed  CAS  Google Scholar 

  • Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SM (2004) Distinct sequence motifs within the 68–kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem 279:35788–35797

    PubMed  CAS  Google Scholar 

  • Dichtl B, Aasland R, Keller W (2004) Functions for S. cerevisiae Swd2p in 3′ end formation of specific mRNAs and snoRNAs and global histone 3 lysine 4 methylation. RNA 10:965–977

    PubMed  CAS  Google Scholar 

  • Dichtl B, Blank D, Sadowski D, Hubner W, Weiser S, Keller W (2002) Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J 21:4125–4135

    PubMed  CAS  Google Scholar 

  • Dichtl B, Keller W (2001) Recognition of polyadenylation sites in yeast pre-mRNAs by cleavage and polyadenylation factor. EMBO J 20:3197–3209

    PubMed  CAS  Google Scholar 

  • Dickson KS, Bilger A, Ballantyne S, Wickens MP (1999) The cleavage and polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylation. Mol Cell Biol 19:5707–5717

    PubMed  CAS  Google Scholar 

  • Dickson KS, Thompson SR, Gray NK, Wickens D (2001) Poly(A) polymerase and the regulation of cytoplasmic polyadenylation. J Biol Chem 276:41810–41816

    PubMed  CAS  Google Scholar 

  • Dominski Z, Yang XC, Marzluff WF (2005a) The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell 123:37–48

    PubMed  CAS  Google Scholar 

  • Dominski Z, Yang XC, Purdy D, Wagner EJ, Marzluff WF (2005b) A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol Cell Biol 25:1489–1500

    PubMed  CAS  Google Scholar 

  • Dong H, Deng Y, Chen J, Wang S, Peng S, Dai C, Fang Y, Shao J, Lou Y, Li D (2007) An exploration of 3′-end processing signals and their tissue distribution in Oryza sativa. Gene 389:107–113

    PubMed  Google Scholar 

  • Elliott BJ, Dattaroy T, Meeks-Midkiff LR, Forbes KP, Hunt AG (2003) An interaction between an Arabidopsis poly(A) polymerase and a homologue of the 100 kDa subunit of CPSF. Plant Mol Biol 51:373–384

    PubMed  CAS  Google Scholar 

  • Evans D, Perez I, MacMorris E, Leake D, Wilusz CJ, Blumenthal T (2001) A complex containing CstF-64 and the SL2 snRNP connects mRNA 3′ end formation and trans-splicing in C. elegans operons. Genes Dev 15:2562–2571

    PubMed  CAS  Google Scholar 

  • Forbes KP. 2005. Characterization of plant polyadenylation trans-acting factors that modify poly(A) polymerase activity. Plant Physiology. Lexington, KY: University of Kentucky

    Google Scholar 

  • Forbes KP, Addepalli B, Hunt AG (2006) An Arabidopsis Fip1 homolog interacts with RNA and provides conceptual links with a number of other polyadenylation factor subunits. J Biol Chem 281:176–186

    PubMed  CAS  Google Scholar 

  • Giranton JL, Ariza MJ, Dumas C, Cock JM, Gaude T (1995) The S locus receptor kinase gene encodes a soluble glycoprotein corresponding to the SKR extracellular domain in Brassica oleracea. Plant J 8:827–834

    PubMed  CAS  Google Scholar 

  • Graber JH, Cantor CR, Mohr SC, Smith TF (1999) In silico detection of control signals: mRNA 3′-end-processing sequences in diverse species. Proc Natl Acad Sci USA 96:14055–14060

    PubMed  CAS  Google Scholar 

  • Graveley BR, Fleming ES, Gilmartin GM (1996) RNA structure is a critical determinant of poly(A) site recognition by cleavage and polyadenylation specificity factor. Mol Cell Biol 16:4942–4951

    PubMed  CAS  Google Scholar 

  • Gross S, Moore CL (2001) Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3′-end formation. Mol Cell Biol 21:8045–8055

    PubMed  CAS  Google Scholar 

  • Gunderson SI, Beyer K, Martin G, Keller W, Boelens WC, Mattaj LW (1994) The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 76:531–541

    PubMed  CAS  Google Scholar 

  • Gunderson SI, Vagner S, Polycarpou-Schwarz G, Mattaj IW (1997) Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. Genes Dev 11:761–773

    PubMed  CAS  Google Scholar 

  • Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Jr., Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, Salzberg SL, White O (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31:5654–5666

    PubMed  CAS  Google Scholar 

  • Hammell CM, Gross S, Zenklusen D, Heath CV, Stutz F, Moore C, Cole CN (2002) Coupling of termination, 3′ processing, and mRNA export. Mol Cell Biol 22:6441–6457

    PubMed  CAS  Google Scholar 

  • Hansen WR, Barsic-Tress N, Taylor L, Curthoys NP (1996) The 3′-nontranslated region of rat renal glutaminase mRNA contains a pH-responsive stability element. Am J Physiol Renal Physiol 271:F126–F131

    CAS  Google Scholar 

  • Henderson IR, Liu F, Drea S, Simpson GG, Dean C (2005) An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development 132:3597–3607

    PubMed  CAS  Google Scholar 

  • Herr AJ, Molnar A, Jones A, Baulcombe DC (2006) Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci USA 103:14994–15001

    PubMed  CAS  Google Scholar 

  • Hofmann I, Schnolzer H, Kaufmann I, Franke WW (2002) Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes. Mol Biol Cell 13:1665–1676

    PubMed  CAS  Google Scholar 

  • Hu J, Lutz CS, Wilusz J, Tian B (2005) Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 11:1485–1493

    PubMed  CAS  Google Scholar 

  • Hunt A (1994) Messenger RNA 3′ end formation in plants. Annu Rev Plant Physiol Plant Mol Biol 45:47–60

    CAS  Google Scholar 

  • Hunt AG, MacDonald MH (1989) Deletion analysis of the polyadenylation signal of a pea ribulose-1, 5-bisphosphate carboxylase small-subunit gene. Plant Mol Biol 13:125–138

    PubMed  CAS  Google Scholar 

  • Iida K, Seki I, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K (2004) Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res 32:5096–5103

    PubMed  CAS  Google Scholar 

  • Imai Y, Matsuo N, Ogawa S, Tohyama Y, Takagi T (1998) Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation. Brain Res Mol Brain Res 53:33–40

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Yoshimura K, Tamoi I, Takeda T, Shigeoka S (1997) Alternative mRNA splicing of 3′-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochem J 328:795–800

    PubMed  CAS  Google Scholar 

  • Ji G, Zheng J, Shen Y, Wu X, Jiang R, Lin Y, Loke JC, Davis KM, Reese GJ, Li QQ (2007) Predictive modeling of plant messenger RNA polyadenylation sites. BMC Bioinformatics 8:43

    PubMed  Google Scholar 

  • Jin Y, Bian T (2004) Nontemplated nucleotide addition prior to polyadenylation: a comparison of Arabidopsis cDNA and genomic sequences. RNA10:1695–1697

    PubMed  CAS  Google Scholar 

  • Kashiwabara S, Noguchi J, Zhuang T, Ohmura K, Honda A, Sugiura S, Miyamoto K, Takahashi S, Inoue K, Ogura A, Baba T (2002) Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science 298:1999–2002

    PubMed  CAS  Google Scholar 

  • Kashiwabara S, Zhuang T, Yamagata K, Noguchi J, Fukamizu A, Baba T (2000) Identification of a novel isoform of poly(A) polymerase, TPAP, specifically present in the cytoplasm of spermatogenic cells. Dev Biol 228:106–115

    PubMed  CAS  Google Scholar 

  • Kaufmann I, Martin G, Friedlein A, Langen H, Keller W (2004) Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 23:616–626

    PubMed  CAS  Google Scholar 

  • Kavanagh E, Buchert K, Tsapara A, Choquet A, Balda MS, Hollande F, Matter K (2006) Functional interaction between the ZO-1-interacting transcription factor ZONAB/DbpA and the RNA processing factor symplekin. J Cell Sci 119:5098–5105

    PubMed  CAS  Google Scholar 

  • Kessler MM, Henry MF, Shen E, Zhao J, Gross S, Silver PA, Moore CL (1997) Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast. Genes Dev 11:2545–2556

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa K, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata S, Yoshimura A, Miura J, Kusumegi T, Oka A, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino A, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28, 000 cDNA clones from japonica rice. Science 301:376–379

    PubMed  Google Scholar 

  • Kim K, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S (2004) Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J 23:354–364

    PubMed  CAS  Google Scholar 

  • Ko CH, Brendel V, Taylor RD, Walbot V (1998) U-richness is a defining feature of plant introns and may function as an intron recognition signal in maize. Plant Mol Biol 36:573–583

    PubMed  CAS  Google Scholar 

  • Kolev NG, Steitz JA (2005) Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs. Genes Dev 19:2583–2592

    PubMed  CAS  Google Scholar 

  • Kuhn U, Wahle E (2004) Structure and function of poly(A) binding proteins. Biochim Biophys Acta 1678:67–84

    PubMed  CAS  Google Scholar 

  • Le YJ, Kim H, Chung JH, Lee Y. (2001) Testis-specific expression of an intronless gene encoding a human poly(A) polymerase. Mol Cells 11:379–385

    PubMed  CAS  Google Scholar 

  • Lee YJ, Lee Y, Chung JH (2000) An intronless gene encoding a poly(A) polymerase is specifically expressed in testis. FEBS Lett 487:287–292

    PubMed  CAS  Google Scholar 

  • Legendre L, Gautheret D (2003) Sequence determinants in human polyadenylation site selection. BMC Genomics 4:7

    PubMed  Google Scholar 

  • Li Q, Hunt AG (1995) A near-upstream element in a plant polyadenylation signal consists of more than six nucleotides. Plant Mol Biol 28:927–934

    PubMed  CAS  Google Scholar 

  • Li Q, Hunt AG (1997) The polyadenylation of RNA in Plants. Plant Physiol 115:321–325

    PubMed  CAS  Google Scholar 

  • Licatalosi DD, Geiger G, Minet L, Schroeder S, Cilli K, McNeil JB, Bentley DL (2002) Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol Cell 9:1101–1111

    PubMed  CAS  Google Scholar 

  • Loke JC, Stahlberg EA, Strenski DG, Haas BJ, Wood PC, Li QQ. (2005) Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol 138:1457–1468

    PubMed  CAS  Google Scholar 

  • Lorkovic´ ZJ, Barta A (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    PubMed  Google Scholar 

  • Lorkovic´ ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W (2000) Pre-mRNA splicing in higher plants. Trends Plant Sci 5:160–167

    PubMed  Google Scholar 

  • MacDonald CC, Wilusz J, Shenk T (1994) The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 14:6647–6654

    PubMed  CAS  Google Scholar 

  • MacDonald MH, Mogen BD, Hunt AG (1991) Characterization of the polyadenylation signal from the T-DNA-encoded octopine synthase gene. Nucleic Acids Res 19:5575–5581

    PubMed  CAS  Google Scholar 

  • Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745

    PubMed  CAS  Google Scholar 

  • Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, Tong L (2006) Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444:953–956

    PubMed  CAS  Google Scholar 

  • Meeks LR (2005) Isolation and characterization of the four Arabidopsis thaliana poly(A) polymerase genes. Plant Physiology. Lexington, KY: University of Kentucky

    Google Scholar 

  • Mendez R, Murthy KG, Ryan K, Manley JL, Richter JD (2000) Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 6:1253–1259

    PubMed  CAS  Google Scholar 

  • Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32:77–92

    PubMed  CAS  Google Scholar 

  • Meyers BC, Vu TH, Tej SS, Ghazal H, Matvienko M, Agrawal V, Ning J, Haudenschild CD (2004) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22:1006–1011

    PubMed  CAS  Google Scholar 

  • Millevoi S, Geraghty F, Idowu B, Tam JL, Antoniou M, Vagner S (2002) A novel function for the U2AF 65 splicing factor in promoting pre-mRNA 3′-end processing. EMBO Rep 3:869–874

    PubMed  CAS  Google Scholar 

  • Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S (2006) An interaction between U2AF 65 and CF I(,) links the splicing and 3′ end processing machineries. EMBO J 25:4854–4864

    PubMed  CAS  Google Scholar 

  • Miyamoto S, Chiorini JA, Urcelay E, Safer B (1996) Regulation of gene expression for translation initiation factor eIF-2 alpha: importance of the 3′ untranslated region. Biochem J 315:791–798

    PubMed  CAS  Google Scholar 

  • Mogen BD, MacDonald MH, Leggewie G, Hunt AG (1992) Several distinct types of sequence elements are required for efficient mRNA 3′ end formation in a pea rbcS gene. Mol Cell Biol 12:5406–5414

    PubMed  CAS  Google Scholar 

  • Morlando M, Ballarino M, Greco P, Caffarelli E, Dichtl B, Bozzoni I (2004) Coupling between snoRNP assembly and 3′ processing controls box C/D snoRNA biosynthesis in yeast. EMBO J 23:2392–2401

    PubMed  CAS  Google Scholar 

  • Morlando M, Greco P, Dichtl B, Fatica A, Keller W, Bozzoni I (2002) Functional analysis of yeast snoRNA and snRNA 3′-end formation mediated by uncoupling of cleavage and polyadenylation. Mol Cell Biol 22:1379–1389

    PubMed  CAS  Google Scholar 

  • Murthy KG, Manley JL (1995) The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev 9:2672–2683

    PubMed  CAS  Google Scholar 

  • Nagasaki H, Arita N, Nishizawa T, Suwa M, Gotoh O (2005) Species-specific variation of alternative splicing and transcriptional initiation in six eukaryotes. Gene 364:53–62

    PubMed  CAS  Google Scholar 

  • Nedea E, He X, Kim N, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J (2003) Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J Biol Chem 278:33000–33010

    PubMed  CAS  Google Scholar 

  • Niwa N, Rose SD, Berget SM (1990) In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev 4:1552–1559

    PubMed  CAS  Google Scholar 

  • Ohtsubo N, Iwabuchi O (1994) The conserved 3′-flanking sequence, AATGGAAATG, of the wheat histone H3 gene is necessary for the accurate 3′-end formation of mRNA. Nucleic Acids Res 22:1052–1058

    PubMed  CAS  Google Scholar 

  • Ok SH, Jeong HJ, Bae JM, Shin JS, Luan S, Kim KN (2005) Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization. Plant Physiol 139:138–150

    PubMed  CAS  Google Scholar 

  • Proudfoot N (2004) New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 16:272–278

    PubMed  CAS  Google Scholar 

  • Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C (2007) The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing. J Biol Chem 282:2101–2115

    PubMed  CAS  Google Scholar 

  • Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22:3142–3152

    PubMed  CAS  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    PubMed  CAS  Google Scholar 

  • Rothnie HM (1996) Plant mRNA 3′-end formation. Plant Mol Biol 32:43–61

    PubMed  CAS  Google Scholar 

  • Rothnie HM, Reid J, Hohn T (1994) The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3′-end formation in plants. EMBO J 13:2200–2210

    PubMed  CAS  Google Scholar 

  • Rouget C, Papin C, Mandart E (2006) Cytoplasmic CstF-77 protein belongs to a masking complex with cytoplasmic polyadenylation element-binding protein in Xenopus oocytes. J Biol Chem 281:28687–28698

    PubMed  CAS  Google Scholar 

  • Ruegsegger U, Beyer K, Keller W (1996) Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors. J Biol Chem 271:6107–6113

    PubMed  CAS  Google Scholar 

  • Ruegsegger U, Blank D, Keller W (1998) Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol Cell 1:243–253

    PubMed  CAS  Google Scholar 

  • Ryan K, Calvo O, Manley JL (2004) Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 10:565–573

    PubMed  CAS  Google Scholar 

  • Sanfacon H, Brodmann P, Hohn T (1991) A dissection of the cauliflower mosaic virus polyadenylation signal. Genes Dev 5:141–149

    PubMed  CAS  Google Scholar 

  • Simpson CG, Jennings SN, Clark GP, Thow G, Brown JW (2004) Dual functionality of a plant U-rich intronic sequence element. Plant J 37:82–91

    PubMed  CAS  Google Scholar 

  • Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003) FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777–787

    PubMed  CAS  Google Scholar 

  • Simpson GG, Filipowicz W (1996) Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol Biol 32:1–41

    PubMed  CAS  Google Scholar 

  • Skadsen RW, Knauer NS (1995) Alternative polyadenylation generates three low-pI alpha-amylase mRNAs with differential expression in barley. FEBS Lett 361:220–224

    PubMed  CAS  Google Scholar 

  • Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20:68–71

    PubMed  CAS  Google Scholar 

  • Stoilov P, Rafalska I, Stamm S (2002) YTH: a new domain in nuclear proteins. Trends Biochem Sci 27:495–497

    PubMed  CAS  Google Scholar 

  • Tacahashi Y, Helmling S, Moore CL (2003) Functional dissection of the zinc finger and flanking domains of the Yth1 cleavage/polyadenylation factor. Nucleic Acids Res 31:1744–1752

    PubMed  CAS  Google Scholar 

  • Tang G, Zhu X, Gakiere B, Levanony H, Kahana A, Galili G (2002) The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron. Plant Physiol 130:147–154

    PubMed  CAS  Google Scholar 

  • Tantikanjana T, Nasrallah ME, Stein JC, Chen CH, Nasrallah JB (1993) An alternative transcript of the S locus glycoprotein gene in a class II pollen-recessive self-incompatibility haplotype of Brassica oleracea encodes a membrane-anchored protein. Plant Cell 5:657–666

    PubMed  CAS  Google Scholar 

  • Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33:201–212

    PubMed  CAS  Google Scholar 

  • Tian B, Pan Z, Lee JY (2007) Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res 17:156–165

    PubMed  CAS  Google Scholar 

  • Touriol C, Morillon A, Gensac MC, Prats H, Prats AC (1999) Expression of human fibroblast growth factor 2 mRNA is post-transcriptionally controlled by a unique destabilizing element present in the 3′-untranslated region between alternative polyadenylation sites. J Biol Chem 274:21402–21408

    PubMed  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg T, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    PubMed  CAS  Google Scholar 

  • Valentini SR, Weiss VH, Silver PA (1999) Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation. RNA5:272–280

    PubMed  CAS  Google Scholar 

  • Venkataraman K, Brown KM, Gilmartin GM (2005) Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 19:1315–1327

    PubMed  CAS  Google Scholar 

  • Wahle E, Ruegsegger U (1999) 3′-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 23:277–295

    PubMed  CAS  Google Scholar 

  • Wallace AM, Dass B, Ravnik SE, Tonk V, Jenkins NA, Gilbert DJ, Copeland NG, MacDonald CC (1999) Two distinct forms of the 64, 000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells. Proc Natl Acad Sci USA 96:6763–6768

    PubMed  CAS  Google Scholar 

  • Wallace AM, Denison TL, Attaya EN, MacDonald CC (2004) Developmental distribution of the polyadenylation protein CstF-64 and the variant tauCstF-64 in mouse and rat testis. Biol Reprod 70:1080–1087

    PubMed  CAS  Google Scholar 

  • Wu C, Alwine JC (2004) Secondary structure as a functional feature in the downstream region of mammalian polyadenylation signals. Mol Cell Biol 24:2789–2796

    PubMed  CAS  Google Scholar 

  • Wu L, Ueda T, Messing J. (1993) 3′-end processing of the maize 27 kDa zein mRNA. Plant J 4:535–544

    PubMed  CAS  Google Scholar 

  • Wu L, Ueda T, Messing J (1994) Sequence and spatial requirements for the tissue- and species-independent 3′-end processing mechanism of plant mRNA. Mol Cell Biol 14:6829–6838

    PubMed  CAS  Google Scholar 

  • Xiao YL, Smith SR, Ishmael N, Redman JC, Kumar N, Monaghan EL, Ayele M, Haas BJ, Wu HC, Town CD (2005) Analysis of the cDNAs of hypothetical genes on Arabidopsis chromosome 2 reveals numerous transcript variants. Plant Physiol 139:1323–1337

    PubMed  CAS  Google Scholar 

  • Xing H, Mayhew CN, Cullen KE, Park-Sarge OK, Sarge KD (2004) HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin. J Biol Chem 279:10551–10555

    PubMed  CAS  Google Scholar 

  • Xu R, Ye X, Quinn Li Q (2004) AtCPSF73-II gene encoding an Arabidopsis homolog of CPSF 73 kDa subunit is critical for early embryo development. Gene 324:35–45

    PubMed  CAS  Google Scholar 

  • Xu R, Zhao H, Dinkins RD, Cheng X, Carberry G, Li QQ. (2006) The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Mol Biol 61:799–815

    PubMed  CAS  Google Scholar 

  • Yan J, Marr TG. 2005. Computational analysis of 3′-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat. Genome Res 15:369–375

    PubMed  CAS  Google Scholar 

  • Yao Y, Song L, Katz Y, Galili G. (2002) Cloning and characterization of Arabidopsis homologues of the animal CstF complex that regulates 3′ mRNA cleavage and polyadenylation. J Exp Bot 53:2277–2278

    PubMed  CAS  Google Scholar 

  • Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM (2003) Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res 31:1375–1386

    PubMed  CAS  Google Scholar 

  • Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445

    PubMed  CAS  Google Scholar 

  • Zhuang T, Kashiwabara S, Noguchi J and Baba T (2004) Transgenic expression of testis-specific poly(A) polymerase TPAP in wild-type and TPAP-deficient mice. J Reprod Dev 50:207–213

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunt, A.G. (2008). Messenger RNA 3′ End Formation in Plants. In: Reddy, A.S.N., Golovkin, M. (eds) Nuclear pre-mRNA Processing in Plants. Current Topics in Microbiology and Immunology, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76776-3_9

Download citation

Publish with us

Policies and ethics