Skip to main content

Stress Echocardiography in Children

  • Chapter
Stress Echocardiography

The rationale for applying stress echocardiography in children is not different from application of the technique in adults. Sick children may need cardiac stress imaging, and stress echocardiography is becoming more common in the pediatric population. Obviously, to perform these procedures in the most adequate way, proper training of personnel and proper staffing of the pediatric stress laboratory are required to ensure the safety of patients and that the desired testing information is obtained. For these reasons, and as recommended by a recent 2006 Statement of the American Heart Association, pediatric testing should remain an integral part of pediatric cardiology training. A focused competence for the pediatric population should ideally be an integral part of the high-volume stress echocardiography laboratory. Diagnostic questions raised by children are extremely variable, and require a versatile approach of highly trained personnel. In our experience, pediatric stress echocardiography is performed as part of a team – between an adult cardiologist trained in stress echocardiography and a pediatric cardiologist directly involved in the treatment of the patient. Together, the two cardiologists discuss the indications, perform the examination, and utilize the results in light of the clinical context. In this way, inappropriateness is minimized and the diagnostic yield is optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Picano E (1992) Stress echocardiography. From pathophysiological toy to diagnostic tool. Point of view. Circulation 85:1604–1612

    CAS  Google Scholar 

  2. Kimball TR (2002) Pediatric stress echocardiography. Pediatr Cardiol 23:347–357

    Article  PubMed  Google Scholar 

  3. Paridon SM, Alpert BS, Boas SR, et al; American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. (2006) Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation 113:1905–1920

    Article  PubMed  Google Scholar 

  4. Newburger JW, Takahashi M, Gerber MA, et al; Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114:1708–1733

    Article  PubMed  Google Scholar 

  5. Pahl E, Sehgal R, Chrystof D, et al (1995) Feasibility of exercise stress echocardiography for the follow-up of children with coronary involvement secondary to Kawasaki disease. Circulation 91:122–128

    PubMed  CAS  Google Scholar 

  6. Noto N, Ayusawa M, Karasawa K, et al (1996) Dobutamine stress echocardiography for detection of coronary artery stenosis in children with Kawasaki disease. J Am Coll Cardiol 27:1251–1256

    Article  PubMed  CAS  Google Scholar 

  7. Kimball TR, Witt SA, Daniels SR (1997) Dobutamine stress echocardiography in the assessment of suspected myocardial ischemia in children and young adults. Am J Cardiol 79:380–384

    Article  PubMed  CAS  Google Scholar 

  8. Zilberman MV, Goya G, Witt SA, et al (2003) Dobutamine stress echocardiography in the evaluation of young patients with Kawasaki disease. Pediatr Cardiol 24:338–343

    Article  PubMed  CAS  Google Scholar 

  9. Lim CW, Ho KT, Quek SC. (2006) Exercise myocardial perfusion stress testing in children with Kawasaki disease. J Paediatr Child Health 42:419–422

    Article  PubMed  Google Scholar 

  10. Chu WC, Mok GC, Lam WW, et al (2006) Assessment of coronary artery aneurysms in paediatric patients with Kawasaki disease by multidetector row CT angiography: feasibility and comparison with 2D echocardiography. Pediatr Radiol 36:1148–1153

    Article  PubMed  Google Scholar 

  11. Ogawa S, Ohkubo T, Fukazawa R, et al (2004) Estimation of myocardial hemodynamics before and after intervention in children with Kawasaki disease. J Am Coll Cardiol 43:653

    Article  PubMed  Google Scholar 

  12. Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36:121–125

    Article  PubMed  Google Scholar 

  13. Ait-Ali L, Foffa I, Andreassi MG (2007) Diagnostic and therapeutic radiation exposure in children: new evidence and perspectives from a biomarker approach. Pediatr Radiol. 37:109–111

    Article  PubMed  Google Scholar 

  14. Kahwaji IY, Connuck DM, Tafari N, et al (2002) A national survey on the pediatric cardiologist's clinical approach for patients with Kawasaki disease. Pediatr Cardiol 23:639–646

    Article  PubMed  CAS  Google Scholar 

  15. Henein MY, Dinarevic S, O'Sullivan CA, et al (1998) Exercise echocardiography in children with Kawasaki disease: ventricular long axis is selectively abnormal. Am J Cardiol 81:1356–1359

    Article  PubMed  CAS  Google Scholar 

  16. Yu X, Hashimoto I, Ichida F, et al (2001) Dipyridamole stress ultrasonic myocardial tissue characterization in patients with Kawasaki disease. J Am Soc Echocardiogr 14:682–690

    Article  PubMed  CAS  Google Scholar 

  17. Ishii M, Himeno W, Sawa M, et al (2002) Assessment of the ability of myocardial contrast echocardiography with harmonic power Doppler imaging to identify perfusion abnormalities in patients with Kawasaki disease at rest and during dipyridamole stress. Pediatr Cardiol 23:192–199

    Article  PubMed  CAS  Google Scholar 

  18. Pahl E (2000) Transplant coronary artery disease in children. Prog Pediatr Cardiol 11:137–143

    Article  PubMed  Google Scholar 

  19. Lewis JF, Selman SB, Murphy JD, et al (1997) Dobutamine echocardiography for prediction of ischemic events in heart transplant recipients. J Heart Lung Transplant 16:390–393

    PubMed  CAS  Google Scholar 

  20. Larsen RL, Applegate PM, Dyar DA, et al (1998) Dobutamine stress echocardiography for assessing coronary artery disease after transplantation in children. J Am Coll Cardiol 32:515–520

    Article  PubMed  CAS  Google Scholar 

  21. Pahl E, Crawford SE, Swenson JM (1999) Dobutamine stress echocardiography: experience in pediatric heart transplant recipients. J Heart Lung Transplant 18:725–732

    Article  PubMed  CAS  Google Scholar 

  22. Donofrio MT, Kakavand B, Moskowitz WB (2000) Evaluation of regional wall motion and quantitative measures of ventricular function during dobutamine stress echocardiography in pediatric cardiac transplantation patients. J Am Soc Echocardiogr 13:932–940

    Article  PubMed  CAS  Google Scholar 

  23. Di Filippo S, Semiond B, Roriz R, et al (2003) Non-invasive detection of coronary artery disease by dobutamine-stress echocardiography in children after heart transplantation. J Heart Lung Transplant 22:876–882

    Article  PubMed  Google Scholar 

  24. Li W, Henein M, Gatzoulis M (2008) Echocardiography in adult congenital heart disease. Springer, Heidelberg

    Google Scholar 

  25. Li W, Hornung TS, Francis DP, et al (2004) Relation of biventricular function quantified by stress echocardiography to cardiopulmonary exercise capacity in adults with Mustard (atrial switch) procedure for transposition of the great arteries. Circulation 110:1380–1386

    Article  PubMed  Google Scholar 

  26. Pedra SR, Pedra CA, Abizaid AA, et al (2005) Intracoronary ultrasound assessment late after the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol 45:2061–2068

    Article  PubMed  Google Scholar 

  27. Hauser M, Bengel FM, Kühn A, et al (2001) Myocardial blood flow and flow reserve after coronary reimplantation in patients after arterial switch and Ross operation. Circulation 103:1875–1880

    PubMed  CAS  Google Scholar 

  28. Hui L, Chau AK, Leung MP, et al (2005) Assessment of left ventricular function long term after arterial switch operation for transposition of the great arteries by dobutamine stress echocardiography. Heart 91:68–72

    Article  PubMed  CAS  Google Scholar 

  29. De Caro E, Ussia GP, Marasini M, et al (2003) Transoesophageal atrial pacing combined with transthoracic two dimensional echocardiography: experience in patients operated on with arterial switch operation for transposition of the great arteries. Heart 89:91–95

    Article  PubMed  Google Scholar 

  30. Decena BF III, Tischler MD (1999) Stress echocardiography in valvular heart disease. Cardiol Clin 17:555–572, ix

    Article  PubMed  Google Scholar 

  31. Cotrim C, Almeida AG, Carrageta M (2007) Clinical significance of intraventricular gradient during effort in an adolescent karate player. Cardiovasc Ultrasound 5:39

    Article  PubMed  Google Scholar 

  32. Hartmann J, Knebel F, Eddicks S, et al (2007) Noninvasive monitoring of myocardial function after surgical and cytostatic therapy in a peritoneal metastasis rat model: assessment with tissue Doppler and non-Doppler 2D strain echocardiography. Cardiovasc Ultrasound 5:23

    Article  PubMed  Google Scholar 

  33. Mercuro G, Cadeddu C, Piras A, et al (2007) Early epirubicin-induced myocardial dysfunction revealed by serial tissue Doppler echocardiography: correlation with inflammatory and oxidative stress markers. Oncologist 12:1124–1133

    Article  PubMed  CAS  Google Scholar 

  34. De Wolf D, Suys B, Maurus R, et al (1996) Dobutamine stress echocardiography in the evaluation of late anthracycline cardiotoxicity in childhood cancer survivors. Pediatr Res 39:504–512

    Article  PubMed  CAS  Google Scholar 

  35. Klewer SE, Goldberg SJ, Donnerstein RL, et al (1992) Dobutamine stress echocardiography: a sensitive indicator of diminished myocardial function in asymptomatic doxorubicin-treated long-term survivors of childhood cancer. J Am Coll Cardiol 19:394–401

    Article  PubMed  CAS  Google Scholar 

  36. Lanzarini L, Bossi G, Laudisa ML, et al (2000) Lack of clinically significant cardiac dysfunction during intermediate dobutamine doses in long-term childhood cancer survivors exposed to anthracyclines. Am Heart J 140:315–323

    Article  PubMed  CAS  Google Scholar 

  37. De Souza AM, Potts JE, Potts MT, et al (2007) A stress echocardiography study of cardiac function during progressive exercise in pediatric oncology patients treated with anthracy-clines. Pediatr Blood Cancer 49:56–64

    Article  PubMed  Google Scholar 

  38. Mariotti E, Agostini A, Angelucci E, et al (1996) Reduced left ventricular contractile reserve identified by low dose dobutamine echocardiography as an early marker of cardiac involvement in asymptomatic patients with thalassemia major. Echocardiography 13:463–472

    Article  PubMed  Google Scholar 

  39. Apostolopoulou SC, Laskari CV, Tsoutsinos A, et al (2007) Doppler tissue imaging evaluation of right ventricular function at rest and during dobutamine infusion in patients after repair of tetralogy of Fallot. Int J Cardiovasc Imaging 23:25–31

    Article  PubMed  Google Scholar 

  40. Ait-ali L, Festa G, Gerbasi E, et al (2008) Semisupine exercise Doppler stress echocardiogra-phy in operated Fallot. Eur J Echocardiography (Abstract Supp)

    Google Scholar 

  41. Oskarsson G (2004) Coronary flow and flow reserve in children. Acta Paediatr Suppl 93:20–25

    PubMed  CAS  Google Scholar 

  42. Noto N, Karasawa K, Ayusawa M, et al (1997) Measurement of coronary flow reserve in children by transthoracic Doppler echocardiography. Am J Cardiol 80:1638–1639

    Article  PubMed  CAS  Google Scholar 

  43. Cicala S, Galderisi M, Grieco M, et al (2007) Transthoracic Echo-Doppler Assessment of Coronary Microvascular Function Late after Kawasaki Disease. Pediatr Cardiol 29:321–327

    Article  PubMed  Google Scholar 

  44. Shimada S, Harada K, Toyono M, et al (2007) Using transthoracic Doppler echocardiography to diagnose reduced coronary flow velocity reserve in the posterior descending coronary artery in children with elevated right ventricular pressure. Circ J 71:1912–1917

    Article  PubMed  Google Scholar 

  45. Harada K, Yasuoka K, Tamura M, et al (2002) Coronary flow reserve assessment by Doppler echocardiography in children with and without congenital heart defect: comparison with invasive technique. J Am Soc Echocardiogr 15:1121–1126

    Article  PubMed  Google Scholar 

  46. Hiraishi S, Hirota H, Horiguchi Y, et al (2002) Transthoracic Doppler assessment of coronary flow velocity reserve in children with Kawasaki disease: comparison with coronary angiogra-phy and thallium-201 imaging. J Am Coll Cardiol 40:1816–1824

    Article  PubMed  Google Scholar 

  47. Oskarsson G, Pesonen E (2002) Flow dynamics in the left anterior descending coronary artery in infants with idiopathic dilated cardiomyopathy. Am J Cardiol 90:557–561

    Article  PubMed  Google Scholar 

  48. Doty DB, Wright CB, Hiratzka LF, et al (1984) Coronary reserve in volume-induced right ventricular hypertrophy from atrial septal defect. Am J Cardiol 54:1059–1063

    Article  PubMed  CAS  Google Scholar 

  49. Cortigiani L, Rigo F, Gherardi S, et al (2007) Additional prognostic value of coronary flow reserve in diabetic and nondiabetic patients with negative dipyridamole stress echocardiography by wall motion criteria. Am Coll Cardiol 50:1354–1361

    Article  Google Scholar 

  50. Rigo F, Sicari R, Gherardi S, et al (2008) The additive prognostic value of wall motion abnormalities and coronary flow reserve during dipyridamole stress echo. Eur Heart J 29:79–88

    Article  PubMed  Google Scholar 

  51. Picano E (2004) Sustainability of medical imaging. Education and Debate. BMJ 328:578–580

    Article  PubMed  Google Scholar 

  52. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  53. Amis ES Jr, Butler PF, Applegate KE, et al; American College of Radiology. (2007) American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol 4:272–284

    Article  PubMed  Google Scholar 

  54. Ait-Ali L, Bedetti G, Botto N, et al (2007) Cumulative radiation doses from medical testing in grown-up patients with congenital heart disease. Eur Heart J (Abstract Suppl)

    Google Scholar 

  55. Andreassi MG, Ait-Ali L, Botto N, et al (2006) Cardiac catheterization and long-term chromosomal damage in children with congenital heart disease. Eur Heart J 27:2703–2708

    Article  PubMed  Google Scholar 

  56. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation; Nuclear and Radiation Studies Board, Division on Earth and Life Studies, National Research Council of the National Academies (2006) Health Risks From Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. The National Academies Press, Washington, DC

    Google Scholar 

  57. ICRP (2007) The 2007 Recommendations of the international commission on radiological protection. Ann ICRP 37:1–332

    Google Scholar 

  58. FDA Warning (2001) Center for Devices and Radiological Health. Public health notification: reducing radiation risk from computed tomography for pediatric and small adult patients (2 Nov 2001). Available at: www.fda.gov/cdrh/safety.html (accessed July 28, 2006)

  59. Thomas KE, Parnell-Parmley JE, Haidar S, et al. (2006) Assessment of radiation dose awareness among pediatricians. Pediatr Radiol. 2006 May 13

    Google Scholar 

  60. Bedetti G, Pizzi C, Gavaruzzi G, et al (2008) Sub-optimal awareness of radiological dose among patients undergoing cardiac stress scintigraphy. J Am Coll Radiol 5:126–131

    Article  PubMed  Google Scholar 

  61. Correia MJ, Hellies A, Andreassi MG, et al (2005) Lack of radiological awareness among physicians working in a tertiary-care cardiological centre. Int J Cardiol 105:307–311

    Article  Google Scholar 

  62. Lee CI, Haims AH, Monico EP, et al (2004) Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology 231:393–398

    Article  PubMed  Google Scholar 

  63. Picano E (2003) Stress echocardiography: a historical perspective. Special Article. Am J Med 114:126–130

    Article  PubMed  Google Scholar 

  64. Picano E (2004) Informed consent and communication of risk from radiological and nuclear medicine examinations: how to escape from a communication inferno. Education and debate. BMJ 329:849–853

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picano, E., Henein, M. (2009). Stress Echocardiography in Children. In: Picano, E. (eds) Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76466-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76466-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76465-6

  • Online ISBN: 978-3-540-76466-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics