Skip to main content

Pediatric Renal Tumors

  • Reference work entry
Pediatric Nephrology

Abstract

Renal cancers in pediatric patients are relatively common, with an incidence of almost 8 per 1,000,000 representing approximately 7% of all childhood cancers (1). The vast majority (95%) of these are Wilms Tumors (WT) but several other histologic types of renal tumors also occur in children (Table 59-1 ). The incidence of each type of renal tumor is tightly correlated to the age of the patient. WT, most common in children under age five, is very rarely seen in adolescents and young adults. An adolescent with a renal tumor is more likely to have renal cell carcinoma. Rhabdoid tumor of the kidney (RTK) and congenital mesoblastic nephroma (CMN) are seen almost exclusively in infants less than a year, and clear cell sarcoma almost always occurs in children less than four years old.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein L, Linet M, Smith MA, Olshan AF. Renal tumors. In Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995. Ries LAG, Smith MA, Gurney JG (eds.). Bethesda, MD, National Cancer Institute, SEER Program, NIH Publ No 99–4649, 1999, pp. 79–90.

    Google Scholar 

  2. Wilms M. Die Mischgeschwilste. A Georgi Leipzig 1899;1–90.

    Google Scholar 

  3. Rivera MN, Haber DA. Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nat Rev Cancer 2005;5(9):699–712.

    Article  PubMed  CAS  Google Scholar 

  4. Menke AL et al. The wt1-heterozygous mouse; a model to study the development of glomerular sclerosis. J Pathol 2003;200(5):667–674.

    Article  PubMed  CAS  Google Scholar 

  5. Wiener JS, Coppes MJ, Ritchey ML. Current concepts in the biology and management of Wilms tumor. J Urol 1998;159(4):1316–1325.

    Article  PubMed  CAS  Google Scholar 

  6. Rivera MN et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 2007;315(5812):642–645.

    Article  PubMed  CAS  Google Scholar 

  7. Dome JS, Coppes MJ. Recent advances in Wilms tumor genetics. Curr Opin Pediatr 2002;14(1):5–11.

    Article  PubMed  Google Scholar 

  8. Su MC, Huang WC, Lien HC. Beta-catenin expression and mutation in adult and pediatric Wilms’ tumors. Apmis 2008;116(9):771–778.

    Article  PubMed  CAS  Google Scholar 

  9. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 2008;47(6):461–470.

    Article  PubMed  CAS  Google Scholar 

  10. Fukuzawa R et al. Sequential WT1 and CTNNB1 mutations and alterations of beta-catenin localisation in intralobar nephrogenic rests and associated Wilms tumours: two case studies. J Clin Pathol 2007;60(9):1013–1016.

    Article  PubMed  CAS  Google Scholar 

  11. Maiti S et al. Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res 2000;60(22):6288–6292.

    PubMed  CAS  Google Scholar 

  12. Knudson A Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68(4):820–823.

    Article  PubMed  Google Scholar 

  13. Knudson AG Jr., Strong LC. Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Cancer Inst 1972;48(2):313–324.

    PubMed  Google Scholar 

  14. Reddy JC, Licht JD. The WT1 Wilms’ tumor suppressor gene: how much do we really know? Biochim Biophys Acta 1996;1287(1):1–28.

    PubMed  Google Scholar 

  15. Koufos A et al. Loss of alleles at loci on human chromosome 11 during genesis of Wilms’ tumour. Nature 1984;309(5964):170–172.

    Article  PubMed  CAS  Google Scholar 

  16. Lee SB, Haber DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001;264(1):74–99.

    Article  PubMed  CAS  Google Scholar 

  17. Reeve AE et al. Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol Cell Biol 1989;9(4):1799–1803.

    PubMed  CAS  Google Scholar 

  18. Scott RH et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet 2008;40(11):1329–1334.

    Article  PubMed  CAS  Google Scholar 

  19. Maw MA et al. A third Wilms’ tumor locus on chromosome 16q. Cancer Res 1992;52(11):3094–3098.

    PubMed  CAS  Google Scholar 

  20. Lu YJ et al. Chromosome 1q expression profiling and relapse in Wilms’ tumour. Lancet 2002;360(9330):385–386.

    Article  PubMed  CAS  Google Scholar 

  21. Hing S et al. Gain of 1q is associated with adverse outcome in favorable histology Wilms’ tumors. Am J Pathol 2001;158(2):393–398.

    Article  PubMed  CAS  Google Scholar 

  22. Grundy PE et al. Loss of heterozygosity for chromosomes 16q and 1p in Wilms’ tumors predicts an adverse outcome. Cancer Res 1994;54(9):2331–2333.

    PubMed  CAS  Google Scholar 

  23. Sheng WW et al. Chromosome analysis of 31 Wilms’ tumors. Cancer Res 1990;50(9):2786–2793.

    PubMed  CAS  Google Scholar 

  24. Grundy P et al. Chromosome 11 uniparental isodisomy predisposing to embryonal neoplasms. Lancet 1991;338(8774):1079–1080.

    Article  PubMed  CAS  Google Scholar 

  25. Ogawa O et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms’ tumour and gigantism. Nat Genet 1993;5(4):408–412.

    Article  PubMed  CAS  Google Scholar 

  26. Giannoukakis N et al. Parental genomic imprinting of the human IGF2 gene. Nat Genet 1993;4(1):98–101.

    Article  PubMed  CAS  Google Scholar 

  27. Ravenel JD et al. Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms tumor. J Natl Cancer Inst 2001;93(22):1698–1703.

    Article  PubMed  CAS  Google Scholar 

  28. Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature 1991;351(6322):153–155.

    Article  PubMed  CAS  Google Scholar 

  29. Hao Y et al. Tumour-suppressor activity of H19 RNA. Nature 1993;365(6448):764–767.

    Article  PubMed  CAS  Google Scholar 

  30. Cui H et al. Loss of imprinting of insulin-like growth factor-II in Wilms’ tumor commonly involves altered methylation but not mutations of CTCF or its binding site. Cancer Res 2001;61(13):4947–4950.

    PubMed  CAS  Google Scholar 

  31. Algar EM et al. Paternally inherited submicroscopic duplication at 11p15.5 implicates insulin-like growth factor II in overgrowth and Wilms’ tumorigenesis. Cancer Res 2007;67(5):2360–2365.

    Article  PubMed  CAS  Google Scholar 

  32. Haruta M et al. Duplication of paternal IGF2 or loss of maternal IGF2 imprinting occurs in half of Wilms tumors with various structural WT1 abnormalities. Genes Chromosomes Cancer 2008;47(8):712–727.

    Article  PubMed  CAS  Google Scholar 

  33. Satoh Y et al. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms’ tumours. Br J Cancer 2006;95(4):541–547.

    Article  PubMed  CAS  Google Scholar 

  34. Sparago A et al. Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms’ tumour. Hum Mol Genet 2007;16(3):254–264.

    Article  PubMed  CAS  Google Scholar 

  35. Xin Z et al. A novel imprinted gene, KCNQ1DN, within the WT2 critical region of human chromosome 11p15.5 and its reduced expression in Wilms’ tumors. J Biochem 2000;128(5):847–853.

    Article  PubMed  CAS  Google Scholar 

  36. Yamada HY, Gorbsky GJ. Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene 2006;25(9):1330–1339.

    Article  PubMed  CAS  Google Scholar 

  37. Dowdy SF et al. Suppression of tumorigenicity in Wilms tumor by the p15.5-p14 region of chromosome 11. Science 1991;254(5029):293–295.

    Article  PubMed  CAS  Google Scholar 

  38. Haber DA et al. WT1-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant. Science 1993;262(5142):2057–2059.

    Article  PubMed  CAS  Google Scholar 

  39. Haber DA et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell 1990;61(7):1257–1269.

    Article  PubMed  CAS  Google Scholar 

  40. Brenner B et al. RNA polymerase chain reaction detects different levels of four alternatively spliced WT1 transcripts in Wilms’ tumors. Oncogene 1992;7(7):1431–1433.

    PubMed  CAS  Google Scholar 

  41. Brown KW et al. Low frequency of mutations in the WT1 coding region in Wilms’ tumor. Genes Chromosomes Cancer 1993;8(2):74–79.

    Article  PubMed  CAS  Google Scholar 

  42. Bruening W et al. Germline intronic and exonic mutations in the Wilms’ tumour gene (WT1) affecting urogenital development. Nat Genet 1992;1(2):144–148.

    Article  PubMed  CAS  Google Scholar 

  43. Koesters R et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res 1999;59(16):3880–3882.

    PubMed  CAS  Google Scholar 

  44. Gessler M et al. Infrequent mutation of the WT1 gene in 77 Wilms’ tumors. Hum Mutat 1994;3(3):212–222.

    Article  PubMed  CAS  Google Scholar 

  45. Perotti D et al. Functional inactivation of the WTX gene is not a frequent event in Wilms’ tumors. Oncogene 2008;27(33):4625–4632.

    Article  PubMed  CAS  Google Scholar 

  46. Yoo NJ, Kim S, Lee SH. Mutational analysis of WTX gene in wnt/beta-catenin pathway in gastric, colorectal, and hepatocellular carcinomas. Dig Dis Sci 2009 May:54(5):1011–1014.

    Google Scholar 

  47. Francke U et al. Aniridia-Wilms’ tumor association: evidence for specific deletion of 11p13. Cytogenet Cell Genet 1979;24(3):185–192.

    Article  PubMed  CAS  Google Scholar 

  48. Riccardi VM et al. Chromosomal imbalance in the Aniridia-Wilms’ tumor association: 11p interstitial deletion. Pediatrics 1978;61(4):604–610.

    PubMed  CAS  Google Scholar 

  49. Fantes JA et al. Submicroscopic deletions at the WAGR locus, revealed by nonradioactive in situ hybridization. Am J Hum Genet 1992;51(6):1286–1294.

    PubMed  CAS  Google Scholar 

  50. Hill RE et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 1991;354(6354):522–525.

    Article  PubMed  CAS  Google Scholar 

  51. Jordan T et al. The human PAX6 gene is mutated in two patients with aniridia. Nat Genet 1992;1(5):328–332.

    Article  PubMed  CAS  Google Scholar 

  52. Ton CC et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 1991;67(6):1059–1074.

    Article  PubMed  CAS  Google Scholar 

  53. Narahara K et al. Regional mapping of catalase and Wilms tumor–aniridia, genitourinary abnormalities, and mental retardation triad loci to the chromosome segment 11p1305–p1306. Hum Genet 1984;66(2–3):181–185.

    Article  PubMed  CAS  Google Scholar 

  54. Crolla JA et al. A FISH approach to defining the extent and possible clinical significance of deletions at the WAGR locus. J Med Genet 1997;34(3):207–212.

    Article  PubMed  CAS  Google Scholar 

  55. Denys P et al. Association of an anatomo-pathological syndrome of male pseudohermaphroditism, Wilms’ tumor, parenchymatous nephropathy and XX/XY mosaicism. Arch Fr Pediatr 1967;24(7):729–739.

    PubMed  CAS  Google Scholar 

  56. Drash A et al. A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr 1970;76(4):585–593.

    Article  PubMed  CAS  Google Scholar 

  57. Little M, Wells C. A clinical overview of WT1 gene mutations. Hum Mutat 1997;9(3):209–225.

    Article  PubMed  CAS  Google Scholar 

  58. Royer-Pokora B et al. Twenty-four new cases of WT1 germline mutations and review of the literature: genotype/phenotype correlations for Wilms tumor development. Am J Med Genet A 2004;127(3):249–257.

    Article  Google Scholar 

  59. Schumacher V et al. Spectrum of early onset nephrotic syndrome associated with WT1 missense mutations. Kidney Int 1998;53(6):1594–1600.

    Article  PubMed  CAS  Google Scholar 

  60. Bardeesy N et al. WT1 mutations associated with incomplete Denys-Drash syndrome define a domain predicted to behave in a dominant-negative fashion. Genomics 1994;21(3):663–664.

    Article  PubMed  CAS  Google Scholar 

  61. Little MH et al. Evidence that WT1 mutations in Denys-Drash syndrome patients may act in a dominant-negative fashion. Hum Mol Genet 1993;2(3):259–264.

    Article  PubMed  CAS  Google Scholar 

  62. Denamur E et al. WT1 splice-site mutations are rarely associated with primary steroid-resistant focal and segmental glomerulosclerosis. Kidney Int 2000;57(5):1868–1872.

    Article  PubMed  CAS  Google Scholar 

  63. Barbaux S et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997;17(4):467–470.

    Article  PubMed  CAS  Google Scholar 

  64. Klamt B et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet 1998;7(4):709–714.

    Article  PubMed  CAS  Google Scholar 

  65. Henry I et al. Molecular definition of the 11p15.5 region involved in Beckwith-Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma. Hum Genet 1989;81(3):273–277.

    Article  PubMed  CAS  Google Scholar 

  66. Ohlsson R et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet 1993;4(1):94–97.

    Article  PubMed  CAS  Google Scholar 

  67. Weksberg R et al. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet 1993;5(2):143–150.

    Article  PubMed  CAS  Google Scholar 

  68. Hastie ND. The genetics of Wilms’ tumor – a case of disrupted development. Ann Rev Gen 1994;28:523–558.

    Article  CAS  Google Scholar 

  69. Koufos A et al. Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am J Hum Genet 1989;44(5):711–719.

    PubMed  CAS  Google Scholar 

  70. Hu RJ et al. A 2.5-Mb transcript map of a tumor-suppressing subchromosomal transferable fragment from 11p15.5, and isolation and sequence analysis of three novel genes. Genomics 1997;46(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  71. Lapunzina P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am J Med Genet C Semin Med Genet 2005;137(1):53–71.

    Google Scholar 

  72. Scott RH et al. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet 2006 Sep;43(9):705–15.

    Google Scholar 

  73. Hughes-Benzie RM et al. Simpson-Golabi-Behmel syndrome: genotype/phenotype analysis of 18 affected males from 7 unrelated families. Am J Med Genet 1996;66(2):227–234.

    Article  PubMed  CAS  Google Scholar 

  74. Neri G et al. Clinical and molecular aspects of the Simpson-Golabi-Behmel syndrome. Am J Med Genet 1998;79(4):279–283.

    Article  PubMed  CAS  Google Scholar 

  75. Pellegrini M et al. Gpc3 expression correlates with the phenotype of the Simpson-Golabi-Behmel syndrome. Dev Dyn 1998;213(4):431–439.

    Article  PubMed  CAS  Google Scholar 

  76. Pilia G et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 1996;12(3):241–247.

    Article  PubMed  CAS  Google Scholar 

  77. Chitty LS, Clark T, Maxwell D. Perlman syndrome – a cause of enlarged, hyperechogenic kidneys. Prenat Diagn 1998;18(11):1163–1168.

    Article  PubMed  CAS  Google Scholar 

  78. Henneveld HT et al. Perlman syndrome: four additional cases and review. Am J Med Genet 1999;86(5):439–446.

    Article  PubMed  CAS  Google Scholar 

  79. Neri G et al. The Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism and multiple congenital anomalies. Am J Med Genet 1984;19(1):195–207.

    Article  PubMed  CAS  Google Scholar 

  80. Perlman M. Perlman syndrome: familial renal dysplasia with Wilms tumor, fetal gigantism, and multiple congenital anomalies. Am J Med Genet 1986;25(4):793–795.

    Article  PubMed  CAS  Google Scholar 

  81. Hersh JH et al. Risk of malignancy in Sotos syndrome. J Pediatr 1992;120(4 Part 1):572–574.

    Article  PubMed  CAS  Google Scholar 

  82. Kurotaki N et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet 2002;30(4):365–366.

    Article  PubMed  CAS  Google Scholar 

  83. Ellis NA, German J. Molecular genetics of Bloom’s syndrome. Hum Mol Genet 1996;5 Spec No:1457–1463.

    PubMed  CAS  Google Scholar 

  84. Pujana MA et al. Additional complexity on human chromosome 15q: identification of a set of newly recognized duplicons (LCR15) on 15q11-q13, 15q24, and 15q26. Genome Res 2001;11(1):98–111.

    Article  PubMed  CAS  Google Scholar 

  85. Rahman N et al. Evidence for a familial Wilms’ tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet 1996;13(4):461–463.

    Article  PubMed  CAS  Google Scholar 

  86. McDonald JM et al. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res 1998;58(7):1387–1390.

    PubMed  CAS  Google Scholar 

  87. Rapley EA et al. Evidence for susceptibility genes to familial Wilms tumour in addition to WT1, FWT1 and FWT2. Br J Cancer 2000;83(2):177–183.

    Article  PubMed  CAS  Google Scholar 

  88. Guertl B et al. Clonality and loss of heterozygosity of WT genes are early events in the pathogenesis of nephroblastomas. Hum Pathol 2003;34(3):278–281.

    Article  PubMed  CAS  Google Scholar 

  89. Lewis WH et al. Homozygous deletion of a DNA marker from chromosome 11p13 in sporadic Wilms tumor. Genomics 1988;3(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  90. Compton DA et al. Definition of the limits of the Wilms tumor locus on human chromosome 11p13. Genomics 1990;6(2):309–315.

    Article  PubMed  CAS  Google Scholar 

  91. Rose EA et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell 1990;60(3):495–508.

    Article  PubMed  CAS  Google Scholar 

  92. Call KM et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990;60(3):509–520.

    Article  PubMed  CAS  Google Scholar 

  93. Gessler M et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990;343(6260):774–778.

    Article  PubMed  CAS  Google Scholar 

  94. Little MH et al. Equivalent expression of paternally and maternally inherited WT1 alleles in normal fetal tissue and Wilms’ tumours. Oncogene 1992;7(4):635–641.

    PubMed  CAS  Google Scholar 

  95. Kreidberg J. Kidneys and sex, the Wilms’ tumor connection. Pediatr Res 2002;51(2):128.

    Article  PubMed  Google Scholar 

  96. Englert C et al. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. Embo J 1995;14(19):4662–4675.

    PubMed  CAS  Google Scholar 

  97. Reddy JC et al. WT1-mediated transcriptional activation is inhibited by dominant negative mutant proteins. J Biol Chem 1995;270(18):10878–10884.

    Article  PubMed  CAS  Google Scholar 

  98. Gessler M, Konig A, Bruns GA. The genomic organization and expression of the WT1 gene. Genomics 1992;12(4):807–813.

    Article  PubMed  CAS  Google Scholar 

  99. Kent J et al. The evolution of WT1 sequence and expression pattern in the vertebrates. Oncogene 1995;11(9):1781–1792.

    PubMed  CAS  Google Scholar 

  100. Haber DA et al. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA 1991;88(21):9618–9622.

    Article  PubMed  CAS  Google Scholar 

  101. Natoli TA et al. A mammal-specific exon of WT1 is not required for development or fertility. Mol Cell Biol 2002;22(12):4433–4438.

    Article  PubMed  CAS  Google Scholar 

  102. Iben S, Royer-Pokora B. Analysis of native WT1 protein from frozen human kidney and Wilms’ tumors. Oncogene 1999;18(15):2533–2536.

    Article  PubMed  CAS  Google Scholar 

  103. Kudoh T et al. G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/CDK complexes. Proc Natl Acad Sci USA 1995;92(10):4517–4521.

    Article  PubMed  CAS  Google Scholar 

  104. Hammes A et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001;106(3):319–329.

    Article  PubMed  CAS  Google Scholar 

  105. Bruening W, Pelletier J. A non-AUG translational initiation event generates novel WT1 isoforms. J Biol Chem 1996;271(15):8646–8654.

    Article  PubMed  CAS  Google Scholar 

  106. Scharnhorst V et al. Internal translation initiation generates novel WT1 protein isoforms with distinct biological properties. J Biol Chem 1999;274(33):23456–23462.

    Article  PubMed  CAS  Google Scholar 

  107. Sharma PM et al. RNA editing in the Wilms’ tumor susceptibility gene, WT1. Genes Dev 1994;8(6):720–731.

    Article  PubMed  CAS  Google Scholar 

  108. Bor Y et al. The Wilms’ tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes Dev 2006;20(12):1597–1608.

    Article  PubMed  CAS  Google Scholar 

  109. Rauscher FJ III et al. Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 1990;250(4985):1259–1262.

    Article  PubMed  CAS  Google Scholar 

  110. Nakagama H et al. Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product. Mol Cell Biol 1995;15(3):1489–1498.

    PubMed  CAS  Google Scholar 

  111. Madden SL et al. Transcriptional repression mediated by the WT1 Wilms tumor gene product. Science 1991;253(5027):1550–1553.

    Article  PubMed  CAS  Google Scholar 

  112. Reeve AE et al. Expression of insulin-like growth factor-II transcripts in Wilms’ tumour. Nature 1985;317(6034):258–260.

    Article  PubMed  CAS  Google Scholar 

  113. Scott J et al. Insulin-like growth factor-II gene expression in Wilms’ tumour and embryonic tissues. Nature 1985;317(6034):260–262.

    Article  PubMed  CAS  Google Scholar 

  114. Ryan G et al. Repression of Pax-2 by WT1 during normal kidney development. Development 1995;121(3):867–875.

    PubMed  CAS  Google Scholar 

  115. Hewitt SM et al. Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res 1995;55(22):5386–5389.

    PubMed  CAS  Google Scholar 

  116. Zhang X, Xing G, Saunders GF. Proto-oncogene N-myc promoter is down regulated by the Wilms’ tumor suppressor gene WT1. Anticancer Res 1999;19(3A):1641–1648.

    PubMed  CAS  Google Scholar 

  117. Lichnovsky V et al. Expression of BCL-2 in the developing kidney of human embryos and fetuses qualitative and quantitative study. Acta Univ Palacki Olomuc Fac Med 1999;142:61–64.

    PubMed  CAS  Google Scholar 

  118. Mayo MW et al. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. Embo J 1999;18(14):3990–4003.

    Article  PubMed  CAS  Google Scholar 

  119. Gross I et al. The receptor tyrosine kinase regulator Sprouty1 is a target of the tumor suppressor WT1 and important for kidney development. J Biol Chem 2003;278(42):41420–41430.

    Article  PubMed  CAS  Google Scholar 

  120. Harrington MA et al. Inhibition of colony-stimulating factor-1 promoter activity by the product of the Wilms’ tumor locus. J Biol Chem 1993;268(28):21271–21275.

    PubMed  CAS  Google Scholar 

  121. Thate C, Englert C, Gessler M. Analysis of WT1 target gene expression in stably transfected cell lines. Oncogene 1998;17(10):1287–1294.

    Article  PubMed  CAS  Google Scholar 

  122. Rupprecht HD et al. The Wilms’ tumor suppressor gene WT1 is negatively autoregulated. J Biol Chem 1994;269(8):6198–6206.

    PubMed  CAS  Google Scholar 

  123. Basson MA et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 2005;8(2):229–239.

    Article  PubMed  CAS  Google Scholar 

  124. Lee SB et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 1999;98(5):663–673.

    Article  PubMed  CAS  Google Scholar 

  125. Sakurai H et al. EGF receptor ligands are a large fraction of in vitro branching morphogens secreted by embryonic kidney. Am J Physiol 1997;273(3 Part 2):F463–F472.

    PubMed  CAS  Google Scholar 

  126. Wagner N et al. The major podocyte protein nephrin is transcriptionally activated by the Wilms’ tumor suppressor WT1. J Am Soc Nephrol 2004;15(12):3044–3051.

    Article  PubMed  Google Scholar 

  127. Liu G et al. Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J Clin Invest 2003;112(2):209–221.

    PubMed  CAS  Google Scholar 

  128. Tryggvason K, Pikkarainen T, Patrakka J. Nck links nephrin to actin in kidney podocytes. Cell 2006;125(2):221–224.

    Article  PubMed  CAS  Google Scholar 

  129. Wagner KD, Wagner N, Schedl A. The complex life of WT1. J Cell Sci 2003;116(Part 9):1653–1658.

    Article  PubMed  CAS  Google Scholar 

  130. Wartiovaara J et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 2004;114(10):1475–1483.

    PubMed  CAS  Google Scholar 

  131. Guo G et al. WT1 activates a glomerular-specific enhancer identified from the human nephrin gene. J Am Soc Nephrol 2004;15(11):2851–2856.

    Article  PubMed  CAS  Google Scholar 

  132. Koop K et al. Expression of podocyte-associated molecules in acquired human kidney diseases. J Am Soc Nephrol 2003;14(8):2063–2071.

    Article  PubMed  CAS  Google Scholar 

  133. Orlando RA et al. The glomerular epithelial cell anti-adhesin podocalyxin associates with the actin cytoskeleton through interactions with ezrin. J Am Soc Nephrol 2001;12(8):1589–1598.

    PubMed  CAS  Google Scholar 

  134. Palmer RE et al. WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin. Curr Biol 2001;11(22):1805–1809.

    Article  PubMed  CAS  Google Scholar 

  135. Englert C et al. Induction of p21 by the Wilms’ tumor suppressor gene WT1. Cancer Res 1997;57(8):1429–1434.

    PubMed  CAS  Google Scholar 

  136. Lin HH et al. Bcl-2 overexpression prevents apoptosis-induced Madin-Darby canine kidney simple epithelial cyst formation. Kidney Int 1999;55(1):168–178.

    Article  PubMed  CAS  Google Scholar 

  137. Kreidberg JA, Hartwig S. Wilms’ tumor-1: a riddle wrapped in a mystery, inside a kidney. Kidney Int 2008;74(4):411–412.

    Article  PubMed  CAS  Google Scholar 

  138. Scholz H, Kirschner KM. A role for the Wilms’ tumor protein WT1 in organ development. Physiology 2005;20:54–59.

    Article  PubMed  CAS  Google Scholar 

  139. Caricasole A et al. RNA binding by the Wilms tumor suppressor zinc finger proteins. Proc Natl Acad Sci USA 1996;93(15):7562–7566.

    Article  PubMed  CAS  Google Scholar 

  140. Ladomery MR et al. Presence of WT1, the Wilm’s tumor suppressor gene product, in nuclear poly(A)(+) ribonucleoprotein. J Biol Chem 1999;274(51):36520–36526.

    Article  PubMed  CAS  Google Scholar 

  141. Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms’ tumour 1-associating protein. Hum Mol Genet 2000;9(15):2231–2239.

    Article  PubMed  CAS  Google Scholar 

  142. Larsson SH et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 1995;81(3):391–401.

    Article  PubMed  CAS  Google Scholar 

  143. Englert C et al. Truncated WT1 mutants alter the subnuclear localization of the wild-type protein. Proc Natl Acad Sci USA 1995;92(26):11960–11964.

    Article  PubMed  CAS  Google Scholar 

  144. Armstrong JF et al. The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 1993;40(1–2):85–97.

    Article  PubMed  CAS  Google Scholar 

  145. Pritchard-Jones K et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 1990;346(6280):194–197.

    Article  PubMed  CAS  Google Scholar 

  146. Mundlos S et al. Nuclear localization of the protein encoded by the Wilms’ tumor gene WT1 in embryonic and adult tissues. Development 1993;119(4):1329–1341.

    PubMed  CAS  Google Scholar 

  147. Royer-Pokora B et al. Clinical relevance of mutations in the Wilms tumor suppressor 1 gene WT1 and the cadherin-associated protein beta1 gene CTNNB1 for patients with Wilms tumors: results of long-term surveillance of 71 patients from International Society of Pediatric Oncology Study 9/Society for Pediatric Oncology. Cancer 2008;113(5):1080–1089.

    Article  PubMed  Google Scholar 

  148. Fukuzawa R et al. Myogenesis in Wilms’ tumors is associated with mutations of the WT1 gene and activation of Bcl-2 and the Wnt signaling pathway. Pediatr Dev Pathol 2004;7(2):125–137.

    Article  PubMed  CAS  Google Scholar 

  149. Li CM et al. CTNNB1 mutations and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms’ tumors. Am J Pathol 2004;165(6):1943–1953.

    Article  PubMed  CAS  Google Scholar 

  150. Miyagawa K et al. Loss of WT1 function leads to ectopic myogenesis in Wilms’ tumour. Nat Genet 1998;18(1):15–17.

    Article  PubMed  CAS  Google Scholar 

  151. Fukuzawa R et al. Wilms tumour histology is determined by distinct types of precursor lesions and not epigenetic changes. J Pathol 2008;215(4):377–387.

    Article  PubMed  CAS  Google Scholar 

  152. Beckwith JB. Nephrogenic rests and the pathogenesis of Wilms tumor: developmental and clinical considerations. Am J Med Genet 1998;79(4):268–273.

    Article  PubMed  CAS  Google Scholar 

  153. Kikuchi H et al. Genomic changes in the WT-gene (WT1) in Wilms’ tumors and their correlation with histology. Am J Pathol 1992;140(4):781–786.

    PubMed  CAS  Google Scholar 

  154. Pritchard-Jones K, Fleming S. Cell types expressing the Wilms’ tumour gene (WT1) in Wilms’ tumours: implications for tumour histogenesis. Oncogene 1991;6(12):2211–2220.

    PubMed  CAS  Google Scholar 

  155. Ramani P, Cowell JK. The expression pattern of Wilms’ tumour gene (WT1) product in normal tissues and paediatric renal tumours. J Pathol 1996;179(2):162–168.

    Article  PubMed  CAS  Google Scholar 

  156. Fukuzawa R, Reeve AE. Molecular pathology and epidemiology of nephrogenic rests and Wilms tumors. J Pediatr Hematol Oncol 2007;29(9):589–594.

    Article  PubMed  CAS  Google Scholar 

  157. Vuononvirta R et al. Perilobar nephrogenic rests are nonobligate molecular genetic precursor lesions of insulin-like growth factor-II-associated Wilms tumors. Clin Cancer Res 2008;14(23):7635–7644.

    Article  PubMed  CAS  Google Scholar 

  158. Barker N. The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 2008;468:5–15.

    Article  PubMed  CAS  Google Scholar 

  159. Kim KK et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 2009;119(1):213–224.

    Article  PubMed  CAS  Google Scholar 

  160. Schohl A, Fagotto F. Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 2002;129(1):37–52.

    PubMed  CAS  Google Scholar 

  161. Tian YC, Phillips AO. Interaction between the transforming growth factor-beta type II receptor/Smad pathway and beta-catenin during transforming growth factor-beta1-mediated adherens junction disassembly. Am J Pathol 2002;160(5):1619–1628.

    Article  PubMed  CAS  Google Scholar 

  162. Major MB et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 2007;316(5827):1043–1046.

    Article  PubMed  CAS  Google Scholar 

  163. Chang H et al. Wt1 negatively regulates beta-catenin signaling during testis development. Development 2008;135(10):1875–1885.

    Article  PubMed  CAS  Google Scholar 

  164. Tycko B, Li CM, Buttyan R. The Wnt/beta-catenin pathway in Wilms tumors and prostate cancers. Curr Mol Med 2007;7(5):479–489.

    Article  PubMed  CAS  Google Scholar 

  165. Nusse R. Cancer. Converging on beta-catenin in Wilms tumor. Science 2007;316(5827):988–989.

    Article  PubMed  CAS  Google Scholar 

  166. Fukuzawa R et al. Canonical WNT signalling determines lineage specificity in Wilms tumour. Oncogene 2009;28(8):1063–1075.

    Article  PubMed  CAS  Google Scholar 

  167. D’Angio GJ. The National Wilms Tumor Study: a 40 year perspective. Lifetime Data Anal 2007;13(4):463–470.

    Article  PubMed  Google Scholar 

  168. Faria P et al. Focal versus diffuse anaplasia in Wilms tumor – new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. Am J Surg Pathol 1996;20(8):909–920.

    Article  PubMed  CAS  Google Scholar 

  169. Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms tumors: results from the First National Wilms’ Tumor Study. Cancer 1978;41(5):1937–1948.

    Article  PubMed  CAS  Google Scholar 

  170. Green DM et al. Treatment of children with clear-cell sarcoma of the kidney: a report from the National Wilms’ Tumor Study Group. J Clin Oncol 1994;12(10):2132–2137.

    PubMed  CAS  Google Scholar 

  171. Dome JS et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol 2006;24(15):2352–2358.

    Article  PubMed  Google Scholar 

  172. Weeks DA et al. Rhabdoid tumor of kidney. A report of 111 cases from the National Wilms’ Tumor Study Pathology Center. Am J Surg Pathol 1989;13(6):439–458.

    Article  PubMed  CAS  Google Scholar 

  173. Vujanic GM et al. Revised International Society of Paediatric Oncology (SIOP) working classification of renal tumors of childhood. Med Pediatr Oncol 2002;38(2):79–82.

    Article  PubMed  Google Scholar 

  174. Pritchard-Jones K et al. Older age is an adverse prognostic factor in stage I, favorable histology Wilms’ tumor treated with vincristine monochemotherapy: a study by the United Kingdom Children’s Cancer Study Group, Wilm’s Tumor Working Group. J Clin Oncol 2003;21(17):3269–3275.

    Article  PubMed  CAS  Google Scholar 

  175. Breslow N et al. Prognostic factors in nonmetastatic, favorable histology Wilms’ tumor. Results of the Third National Wilms’ Tumor Study. Cancer 1991;68(11):2345–2353.

    Article  PubMed  CAS  Google Scholar 

  176. Green DM et al. Treatment with nephrectomy only for small, stage I/favorable histology Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J Clin Oncol 2001;19(17):3719–3724.

    PubMed  CAS  Google Scholar 

  177. Grundy P et al. Prognostic factors for children with recurrent Wilms’ tumor: results from the Second and Third National Wilms’ Tumor Study. J Clin Oncol 1989;7(5):638–647.

    PubMed  CAS  Google Scholar 

  178. Byrd RL, Evans AE, D’Angio GJ. Adult Wilms tumor: effect of combined therapy on survival. J Urol 1982;127(4):648–651.

    PubMed  CAS  Google Scholar 

  179. Reinhard H et al. Wilms’ tumor in adults: results of the Society of Pediatric Oncology (SIOP) 93–01/Society for Pediatric Oncology and Hematology (GPOH) Study. J Clin Oncol 2004;22(22):4500–4506.

    Article  PubMed  Google Scholar 

  180. Arrigo S et al. Better survival after combined modality care for adults with Wilms’ tumor. A report from the National Wilms’ Tumor Study. Cancer 1990;66(5):827–830.

    Article  PubMed  CAS  Google Scholar 

  181. Grundy PE et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 2005;23(29):7312–7321.

    Article  PubMed  CAS  Google Scholar 

  182. Coppes MJ et al. Acquired von Willebrand disease in Wilms’ tumor patients. J Clin Oncol 1992;10(3):422–427.

    PubMed  CAS  Google Scholar 

  183. Blanchette V, Coppes MJ. Routine bleeding history and laboratory tests in children presenting with a renal mass. Pediatr Blood Cancer 2009;52(3):314–315.

    Article  PubMed  Google Scholar 

  184. Brenner D et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176(2):289–296.

    PubMed  CAS  Google Scholar 

  185. Shamberger RC et al. Surgery-related factors and local recurrence of Wilms tumor in National Wilms Tumor Study 4. Ann Surg 1999;229(2):292–297.

    Article  PubMed  CAS  Google Scholar 

  186. Jereb B et al. Lymph node invasion and prognosis in nephroblastoma. Cancer 1980;45(7):1632–1636.

    Article  PubMed  CAS  Google Scholar 

  187. Othersen HB Jr. et al. Surgical evaluation of lymph node metastases in Wilms’ tumor. J Pediatr Surg 1990;25(3):330–331.

    Article  PubMed  Google Scholar 

  188. Ritchey M et al. Ureteral extension in Wilms’ tumor: a report from the National Wilms’ Tumor Study Group (NWTSG). J Pediatr Surg 2008;43(9):1625–1629.

    Article  PubMed  Google Scholar 

  189. Ritchey ML et al. Small bowel obstruction after nephrectomy for Wilms’ tumor. A report of the National Wilms’ Tumor Study-3. Ann Surg 1993;218(5):654–659.

    Article  PubMed  CAS  Google Scholar 

  190. De Kraker J. Commentary on Wilms’ tumour. Eur J Cancer 1997;33:419.

    Article  Google Scholar 

  191. D’Angio GJ et al. The treatment of Wilms’ tumor: results of the national Wilms’ tumor study. Cancer 1976;38(2):633–646.

    Article  PubMed  Google Scholar 

  192. Tournade MF et al. Results of the Sixth International Society of Pediatric Oncology Wilms’ Tumor Trial and Study: a risk-adapted therapeutic approach in Wilms’ tumor. J Clin Oncol 1993;11(6):1014–1023.

    PubMed  CAS  Google Scholar 

  193. Jereb B et al. Radiotherapy in the SIOP (International Society of Pediatric Oncology) nephroblastoma studies: a review. Med Pediatr Oncol 1994;22(4):221–227.

    Article  PubMed  CAS  Google Scholar 

  194. de Kraker J, Jones KP. Treatment of Wilms tumor: an international perspective. J Clin Oncol 2005;23(13):3156–3157; author reply 3157–3158.

    Article  PubMed  Google Scholar 

  195. Zoeller G et al. Wilms tumor: the problem of diagnostic accuracy in children undergoing preoperative chemotherapy without histological tumor verification. J Urol 1994;151(1):169–171.

    PubMed  CAS  Google Scholar 

  196. Vujanic GM et al. The role of biopsy in the diagnosis of renal tumors of childhood: results of the UKCCSG Wilms tumor study 3. Med Pediatr Oncol 2003;40(1):18–22.

    Article  PubMed  Google Scholar 

  197. Ritchey ML et al. Surgical complications after primary nephrectomy for Wilms’ tumor: report from the National Wilms’ Tumor Study Group. J Am Coll Surg 2001;192(1):63–8; quiz 146.

    Article  PubMed  CAS  Google Scholar 

  198. Dykes EH et al. Risks and benefits of percutaneous biopsy and primary chemotherapy in advanced Wilms’ tumour. J Pediatr Surg 1991;26(5):610–612.

    Article  PubMed  CAS  Google Scholar 

  199. Perlman EJ. Pediatric renal tumors: practical updates for the pathologist. Pediatr Dev Pathol 2005;8(3):320–338.

    Article  PubMed  Google Scholar 

  200. Green DM et al. Effect of duration of treatment on treatment outcome and cost of treatment for Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J Clin Oncol 1998;16(12):3744–3751.

    PubMed  CAS  Google Scholar 

  201. de Kraker J et al. Wilm’s tumor with pulmonary metastases at diagnosis: the significance of primary chemotherapy. International Society of Pediatric Oncology Nephroblastoma Trial and Study Committee. J Clin Oncol 1990;8(7):1187–1190.

    PubMed  Google Scholar 

  202. Pritchard J et al. Results of the United Kingdom Children’s Cancer Study Group first Wilms’ Tumor Study. J Clin Oncol 1995;13(1):124–133.

    PubMed  CAS  Google Scholar 

  203. Baldeyrou P et al. Pulmonary metastases in children: the place of surgery. A study of 134 patients. J Pediatr Surg 1984;19(2):121–125.

    Article  PubMed  CAS  Google Scholar 

  204. Green DM et al. The role of surgical excision in the management of relapsed Wilms’ tumor patients with pulmonary metastases: a report from the National Wilms’ Tumor Study. J Pediatr Surg 1991;26(6):728–733.

    Article  PubMed  CAS  Google Scholar 

  205. Green DM et al. Treatment of children with stages II to IV anaplastic Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J Clin Oncol 1994;12(10):2126–2131.

    PubMed  CAS  Google Scholar 

  206. Ehrlich PF et al. The value of surgery in directing therapy for patients with Wilms’ tumor with pulmonary disease. A report from the National Wilms’ Tumor Study Group (National Wilms’ Tumor Study 5). J Pediatr Surg 2006;41(1):162–167; discussion 162–167.

    Article  PubMed  Google Scholar 

  207. Shamberger RC et al. Intravascular extension of Wilms tumor. Ann Surg 2001;234(1):116–121.

    Article  PubMed  CAS  Google Scholar 

  208. Ritchey ML et al. Intracaval and atrial involvement with nephroblastoma: review of National Wilms Tumor Study-3. J Urol 1988;140(5 Part 2):1113–1118.

    PubMed  CAS  Google Scholar 

  209. Lall A et al. Wilms’ tumor with intracaval thrombus in the UK Children’s Cancer Study Group UKW3 trial. J Pediatr Surg 2006;41(2):382–387.

    Article  PubMed  Google Scholar 

  210. Horwitz JR et al. Renal salvage procedures in patients with synchronous bilateral Wilms’ tumors: a report from the National Wilms’ Tumor Study Group. J Pediatr Surg 1996;31(8):1020–1025.

    Article  PubMed  CAS  Google Scholar 

  211. Davidoff AM et al. The feasibility and outcome of nephron-sparing surgery for children with bilateral Wilms tumor. The St Jude Children’s Research Hospital experience: 1999–2006. Cancer 2008;112(9):2060–2070.

    Article  PubMed  Google Scholar 

  212. Arul GS, Gornall P. Is partial nephrectomy feasible in unilateral Wilms tumour? Results from the UKCCSG study (UKW-3). Pediatr Blood Cancer 2004;43(7):792.

    Article  PubMed  CAS  Google Scholar 

  213. Haecker FM et al. Partial nephrectomy for unilateral Wilms tumor: results of study SIOP 93–01/GPOH. J Urol 2003;170(3):939–942; discussion 943–944.

    Article  PubMed  Google Scholar 

  214. Linni K et al. Nephron-sparing procedures in 11 patients with Wilms’ tumor. Pediatr Surg Int 2003;19(6):457–462.

    Article  PubMed  CAS  Google Scholar 

  215. Borin JF. Laparoscopic radical nephrectomy: long-term outcomes. Curr Opin Urol 2008;18(2):139–144.

    Article  PubMed  Google Scholar 

  216. Iwanaka T et al. Surgical treatment for abdominal neuroblastoma in the laparoscopic era. Surg Endosc 2001;15(7):751–754.

    Article  PubMed  CAS  Google Scholar 

  217. Duarte RJ et al. Further experience with laparoscopic nephrectomy for Wilms’ tumour after chemotherapy. BJU Int 2006;98(1):155–159.

    Article  PubMed  Google Scholar 

  218. Duarte RJ et al. Laparoscopic nephrectomy for wilms tumor after chemotherapy: initial experience. J Urol 2004;172(4 Part 1):1438–1440.

    Article  PubMed  Google Scholar 

  219. Green DM. The treatment of stages I-IV favorable histology Wilms’ tumor. J Clin Oncol 2004;22(8):1366–1372.

    Article  PubMed  Google Scholar 

  220. Green DM et al. Congestive heart failure after treatment for Wilms’ tumor: a report from the National Wilms’ Tumor Study group. J Clin Oncol 2001;19(7):1926–1934.

    PubMed  CAS  Google Scholar 

  221. Abu-Ghosh AM et al. Ifosfamide, carboplatin and etoposide in children with poor-risk relapsed Wilms’ tumor: a Children’s Cancer Group report. Ann Oncol 2002;13(3):460–469.

    Article  PubMed  CAS  Google Scholar 

  222. Metzger ML et al. Topotecan is active against Wilms’ tumor: results of a multi-institutional phase II study. J Clin Oncol 2007;25(21):3130–3136.

    Article  PubMed  CAS  Google Scholar 

  223. Spreafico F et al. Treatment of high-risk relapsed Wilms tumor with dose-intensive chemotherapy, marrow-ablative chemotherapy, and autologous hematopoietic stem cell support: experience by the Italian Association of Pediatric Hematology and Oncology. Pediatr Blood Cancer 2008;51(1):23–28.

    Article  PubMed  Google Scholar 

  224. Feusner JH et al. Renal failure does not preclude cure in children receiving chemotherapy for Wilms tumor: a report from the National Wilms Tumor Study Group. Pediatr Blood Cancer 2008;50(2):242–245.

    Article  PubMed  Google Scholar 

  225. D’Angio GJ et al. Treatment of Wilms’ tumor. Results of the Third National Wilms’ Tumor Study. Cancer 1989;64(2):349–360.

    Article  PubMed  Google Scholar 

  226. D’Angio GJ et al. The treatment of Wilms’ tumor: results of the Second National Wilms’ Tumor Study. Cancer 1981;47(9):2302–2311.

    Article  PubMed  Google Scholar 

  227. Choyke PL et al. Screening for Wilms tumor in children with Beckwith-Wiedemann syndrome or idiopathic hemihypertrophy. Med Pediatr Oncol 1999;32(3):196–200.

    Article  PubMed  CAS  Google Scholar 

  228. Green DM et al. Screening of children with hemihypertrophy, aniridia, and Beckwith-Wiedemann syndrome in patients with Wilms tumor: a report from the National Wilms Tumor Study. Med Pediatr Oncol 1993;21(3):188–192.

    Article  PubMed  CAS  Google Scholar 

  229. McNeil DE et al. Screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndromes: a cost-effective model. Med Pediatr Oncol 2001;37(4):349–356.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sunny Hartwig Ph.D. for helping to research and write the genetics portion of this chapter, and Valerie Schumacher for helpful discussions. We would also like to thank Drs. Stephan Voss and Kyle Korek for their assistance in compiling the radiology and pathology figures, respectively.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mullen, E.A., Weldon, C., Kreidberg, J.A. (2009). Pediatric Renal Tumors. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics