Skip to main content

Immune-mediated Glomerular Injury

  • Reference work entry
Pediatric Nephrology

Abstract

Glomerular injury is the central basis of renal insufficiency. Accumulated immunohistopathologic evidence from human kidney diseases and experimental glomerular disease models indicates that immunologic mechanisms are often pivotally involved in glomerular injury. Founded on the classical evidence, recent advances in basic immunology, the molecular and cellular biology of intrinsic glomerular cells, and genetic engineering in mice have provided significant clues to understanding the immune mechanisms that target the glomerulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ooi JD, Holdsworth SR, Kitching AR. Advances in the pathogenesis of Goodpasture’s disease: From epitopes to autoantibodies to effector T cells. J Autoimmun 2008;22:1–6.

    Google Scholar 

  2. Griffin SV, Pichler R, Dittrich M et al. Cell cycle control in glomerular disease. Springer Semin Immunopathol 2003;24:441–457.

    Article  PubMed  Google Scholar 

  3. Debiec H, Guigonis V, Mougenot M et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med 2002;346:2053–2060.

    Article  PubMed  Google Scholar 

  4. Reiser J, von Gersdorff G, Loos M et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004;113:1390–1397.

    PubMed  CAS  Google Scholar 

  5. Kumar et al. Robbins Basic Pathology, 8th Ed., Elsevier/W.B. Saunders, London.

    Google Scholar 

  6. Shimizu M, Kondo S, Urushihara M et al. Role of integrin-linked kinase in epithelial-mesenchymal transition in crescent formation of experimental glomerulonephritis. Nephrol Dial Transplant 2006;21:2380–2390.

    Article  PubMed  CAS  Google Scholar 

  7. Sagrinati C, Netti GS, Mazzinghi B et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 2006;17:2443–2456.

    Article  PubMed  CAS  Google Scholar 

  8. Couser WG, Steinmuller DR, Stilmant MM et al. Experimental glomerulonephritis in the isolated perfused rat kidney. J Clin Invest 1978;62:1275–1287.

    Article  PubMed  CAS  Google Scholar 

  9. Farquhar MG, Saito A, Kerjaschki D et al. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J Am Soc Nephrol 1995;6:35–47.

    PubMed  CAS  Google Scholar 

  10. Kitching AR, Holdsworth SR, Hickey MJ. Targeting leukocytes in immune glomerular diseases. Med Chem 2008;15:448–458.

    CAS  Google Scholar 

  11. Wu J, Hicks J, Borillo J et al. CD4(+) T cells specific to a glomerular basement membrane antigen mediate glomerulonephritis. J Clin Invest 2002;109:517–524.

    PubMed  CAS  Google Scholar 

  12. Wolf D, Hochegger K, Wolf AM et al. CD4 + CD25 + regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J Am Soc Nephrol 2005;16:1360–1370.

    Article  PubMed  CAS  Google Scholar 

  13. Bagavant H, Tung KS. Failure of CD25 + T cells from lupus-prone mice to suppress lupus glomerulonephritis and sialoadenitis. J Immunol 2005;175:944–950.

    PubMed  CAS  Google Scholar 

  14. Kurts C, Heymann F, Lukacs-Kornek V et al. Role of T cells and dendritic cells in glomerular immunopathology. Semin Immunopathol 2007;29:317–335.

    Article  PubMed  CAS  Google Scholar 

  15. Scholz J, Lukacs-Kornek V, Engel DR et al. Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis. J Am Soc Nephrol 2008;19:527–537.

    Article  PubMed  CAS  Google Scholar 

  16. Tipping PG, Kitching AR. Glomerulonephritis, Th1 and Th2: what’s new? Clin Exp Immunol 2005;142:207–215.

    Article  PubMed  CAS  Google Scholar 

  17. Nitta K, Horita S, Ogawa S et al. Resistance of CD28-deficient mice to autologous phase of anti-glomerular basement membrane glomerulonephritis. Clin Exp Nephrol 2003;7:104–112.

    Article  PubMed  CAS  Google Scholar 

  18. Reynolds J, Tam FW, Chandraker A et al. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J Clin Invest 2000;105:643–651.

    Article  PubMed  CAS  Google Scholar 

  19. Odobasic D, Kitching AR et al. Glomerular expression of CD80 and CD86 is required for leukocyte accumulation and injury in crescentic glomerulonephritis. J Am Soc Nephrol 2005;16:2012–2022.

    Article  PubMed  CAS  Google Scholar 

  20. Odobasic D, Kitching AR, Tipping PG et al. CD80 and CD86 costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms. Kidney Int 2005;68:584–594.

    Article  PubMed  CAS  Google Scholar 

  21. Odobasic D, Kitching AR et al. Inducible co-stimulatory molecule ligand is protective during the induction and effector phases of crescentic glomerulonephritis. J Am Soc Nephrol 2006;17:1044–1053.

    Article  PubMed  CAS  Google Scholar 

  22. Reynolds J, Khan SB, Allen AR et al. Blockade of the CD154-CD40 costimulatory pathway prevents the development of experimental autoimmune glomerulonephritis. Kidney Int 2004;66:1444–1452.

    Article  PubMed  CAS  Google Scholar 

  23. Ruth AJ, Kitching AR, Semple TJ et al. Intrinsic renal cell expression of CD40 directs Th1 effectors inducing experimental crescentic glomerulonephritis. J Am Soc Nephrol 2003;14:2813–2822.

    Article  PubMed  CAS  Google Scholar 

  24. Holdsworth SR, Tipping PG. Leukocytes in glomerular injury. Semin Immunopathol 2007;29:355–374.

    Article  PubMed  Google Scholar 

  25. Tarzi RM, Cook HT. Role of Fcgamma receptors in glomerulonephritis. Nephron Exp Nephrol 2003;95:e7–e12.

    Article  PubMed  CAS  Google Scholar 

  26. Jennette JC, Xiao H, Falk RJ. Pathogenesis of vascular inflammation by anti-neutrophil cytoplasmic antibodies. J Am Soc Nephrol 2006;17:1235–1242.

    Article  PubMed  Google Scholar 

  27. Xiao H, Heeringa P, Liu Z et al. The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am J Pathol 2005;167:39–45.

    Article  PubMed  CAS  Google Scholar 

  28. Nolan SL, Kalia N, Nash GB et al. Mechanisms of ANCA-mediated leukocyte-endothelial cell interactions in vivo. J Am Soc Nephrol 2008;19:973–984.

    Article  PubMed  CAS  Google Scholar 

  29. Schreiber A, Xiao H, Falk RJ et al. Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J Am Soc Nephrol 2006;17:3355–3364.

    Article  PubMed  Google Scholar 

  30. Wang Y, Wang YP, Zheng G et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007;72:290–299.

    Article  PubMed  CAS  Google Scholar 

  31. Kluth DC, Erwig LP, Rees AJ. Multiple facets of macrophages in renal injury. Kidney Int 2004;66:542–557.

    Article  PubMed  CAS  Google Scholar 

  32. Isome M, Fujinaka H, Adhikary LP et al. Important role of macrophage ininduction of crescentic anti-GBM glomerulonephritis in WKY rats. Nephrol Dial Transplant 2004;19:2997–3004.

    Article  PubMed  Google Scholar 

  33. Ikezumi Y, Hurst LA, Masaki T et al. Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation. Kidney Int 2003;63:83–95.

    Article  PubMed  CAS  Google Scholar 

  34. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953–964.

    Article  PubMed  CAS  Google Scholar 

  35. Erwig LP, Kluth DC, Rees AJ. Macrophage heterogeneity in renal inflammation. Nephrol Dial Transplant 2003;18:1962–1965.

    Article  PubMed  CAS  Google Scholar 

  36. Wang Y, Wang YP, Zheng G et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007;72:290–299.

    Article  PubMed  CAS  Google Scholar 

  37. Lan HY. Role of macrophage migration inhibition factor in kidney disease. Nephron Exp Nephrol 2008;109:e79–e83.

    Article  PubMed  CAS  Google Scholar 

  38. Hoi AY, Hickey MJ, Hall P et al. Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol 2006;177:5687–5696.

    PubMed  CAS  Google Scholar 

  39. Behmoaras J, Bhangal G, Smith J et al. Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility. Nat Genet 2008;40:553–559.

    Article  PubMed  CAS  Google Scholar 

  40. Kanamaru Y, Scandiuzzi L, Essig M et al. Mast cell-mediated remodeling and fibrinolytic activity protect against fatal glomerulonephritis. J Immunol 2006;176:5607–5615.

    PubMed  CAS  Google Scholar 

  41. Montaviani et al. Eur J Immunol 2007;37:14–16.

    Article  CAS  Google Scholar 

  42. Anders HJ, Banas B, Schlöndorff D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 2004;15:854–867.

    Article  PubMed  CAS  Google Scholar 

  43. Pawar RD, Ramanjaneyulu A, Kulkarni OP et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol 2007;18:1721–1731.

    Article  PubMed  CAS  Google Scholar 

  44. Anders HJ, Vielhauer V, Eis V et al. Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB J 2004;18:534–536.

    PubMed  CAS  Google Scholar 

  45. Suzuki H, Suzuki Y, Narita I et al. Toll-like receptor 9 affects severity of IgA nephropathy. J Am Soc Nephrol 2008;19:2348–2395.

    Article  CAS  Google Scholar 

  46. Wörnle M, Schmid H, Banas B et al. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol 2006;168:370–385.

    Article  PubMed  CAS  Google Scholar 

  47. Berger SP, Daha MR. Complement in glomerular injury. Semin Immunopathol 2007;29:375–384.

    Article  PubMed  CAS  Google Scholar 

  48. Hisano S, Matsushita M, Fujita T et al. Activation of lectin complement pathway in Henoch-Schoenlein purpura nephritis. Am J Kid Dis 2005;45:295–302.

    Article  PubMed  CAS  Google Scholar 

  49. Trendelenburg M, Fossati-Jimack L, Cortes-Hernandez J et al. The role of complement in cryoglobulin-induced immune complex glomerulonephritis. J Immunol 2005;175:6909–6914.

    PubMed  CAS  Google Scholar 

  50. Schreiber A, Xiao H, Jennette JC et al. C5a receptor mediates neutrophils activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 2008;58:289–298.

    Google Scholar 

  51. Mizuno M, Blanchin S, Gasque P et al. High levels of complement C3a receptor in the glomeruli in lupus nephritis. Am J Kidney Dis. 2007;49(5):598–606.

    Article  PubMed  CAS  Google Scholar 

  52. Pippin JW, Durvasula R, Petermann A et al. DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J Clin Invest 2003;111:877–885.

    PubMed  CAS  Google Scholar 

  53. Cybulsky AV, Takano T, Papillon J et al. Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J Biol Chem 2002;277:41342–41351.

    Article  PubMed  CAS  Google Scholar 

  54. Lin F, Salant DJ, Meyerson H et al. Respective roles of decay-accelerating factor and CD59 in circumventing glomerular injury in acute nephrotoxic serum nephritis. J Immunol 2004;172:2636–2642.

    PubMed  CAS  Google Scholar 

  55. Miwa T, Zhou L, Tudoran R et al. DAF/Crry double deficiency in mice exacerbates nephrotoxic serum-induced proteinuria despite markedly reduced systemic complement activity. Mol Immunol 2007;4:139–146.

    Article  CAS  Google Scholar 

  56. Bao L, Haas M, Boackle SA et al. Transgenic expression of a soluble complement inhibitor protects against renal disease and promotes survival in MRL/lpr mice. J Immunol 2002;168:3601–3607.

    PubMed  CAS  Google Scholar 

  57. Appel GB, Cook T, Hageman G et al. Membranoproliferative glomerulonephritis type II (Dense Deposit Disease): An update. J Am Soc Nephrol 2005;16:1392–1404.

    Article  PubMed  Google Scholar 

  58. Licht C, Schlötzer-Schrehardt U, Kirschfink M et al. MPGN II–genetically determined by defective complement regulation? Pediatr Nephrol 2007;22:2–9.

    Article  PubMed  Google Scholar 

  59. Rose KL, Paixao-Cavalcante D, Fish J et al. Factor I is required for the development of membranoproliferative glomerulonephritis in factor H-deficient mice. J Clin Invest 2008;118:608–618.

    PubMed  CAS  Google Scholar 

  60. Pickering MC, Warren J, Rose KL et al. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proc Natl Acad Sci USA. 2006;103:9649–9654.

    Article  PubMed  CAS  Google Scholar 

  61. Dragon-Durey MA, Frémeaux-Bacchi V, Loirat C et al. Homozygous Factor H Deficiencies Associated with Hemolytic Uremic Syndrome or Membranoproliferative Glomerulonephritis: Report and Genetic Analysis of 16 Cases. J Am Soc Nephrol 2004;15:787–795.

    Article  PubMed  CAS  Google Scholar 

  62. Noris M, Brioschi S, Caprioli J et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 2003;362:1542–1547.

    Article  PubMed  CAS  Google Scholar 

  63. Solà-Villà D, Camacho M, Solà R et al. IL-1beta induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int 2006;70:1935–1941.

    PubMed  Google Scholar 

  64. Niemir ZI, Stein H, Ciechanowicz A et al. The in situ expression of interleukin-8 in the normal human kidney and in different morphological forms of glomerulonephritis. Am J Kidney Dis 2004;43:983–998.

    Article  PubMed  CAS  Google Scholar 

  65. Besbas N, Ozaltin F, Catal F et al. Monocyte chemoattractant protein-1 and interleukin-8 levels in children with acute poststreptococcal glomerulonephritis. Pediatr Nephrol 2004;19:864–868.

    Article  PubMed  Google Scholar 

  66. Kitching AR, Turner AL, Wilson GR et al. IL-12p40 and IL-18 in crescentic glomerulonephritis: IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 promotes local inflammation and leukocyte recruitment. J Am Soc Nephrol 2005;16:2023–2033.

    Article  PubMed  CAS  Google Scholar 

  67. Calvani N, Tucci M, Richards HB et al. Th1 cytokines in the pathogenesis of lupus nephritis: the role of IL-18. Autoimmun Rev 2005;4:542–548.

    Article  PubMed  CAS  Google Scholar 

  68. Kitching AR, Turner AL, Wilson GR et al. IL-12p40 and IL-18 in crescentic glomerulonephritis: IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 promotes local inflammation and leukocyte recruitment. J Am Soc Nephrol 2005;16:2023–2033.

    Article  PubMed  CAS  Google Scholar 

  69. Hewins P, Morgan MD, Holden N et al. IL-18 is upregulated in the kidney and primes neutrophil responsiveness in ANCA-associated vasculitis. Kidney Int 2006;69:605–615.

    Article  PubMed  CAS  Google Scholar 

  70. Cook HT, Singh SJ, Wembridge DE et al. Interleukin-4 ameliorates crescentic glomerulonephritis in Wistar Kyoto rats. Kidney Int 1999;55:1319–1326.

    Article  PubMed  CAS  Google Scholar 

  71. Kluth DC, Ainslie CV, Pearce WP et al. Macrophages transfected with adenovirus to express IL-4 reduce inflammation in experimental glomerulonephritis. J Immunol 2001;166:4728–4736.

    PubMed  CAS  Google Scholar 

  72. Rodriguez W, Mold C, Kataranovski M et al. C-reactive protein-mediated suppression of nephrotoxic nephritis: role of macrophages, complement, and Fcgamma receptors. J Immunol 2007;178:530–538.

    PubMed  CAS  Google Scholar 

  73. Mu W, Ouyang X, Agarwal A et al. IL-10 suppresses chemokines, inflammation, and fibrosis in a model of chronic renal disease. J Am Soc Nephrol 2005;16:3651–3660.

    Article  PubMed  CAS  Google Scholar 

  74. Lai PC, Cook HT, Smith J et al. Interleukin-11 attenuates nephrotoxic nephritis in Wistar Kyoto rats. J Am Soc Nephrol 2001;12:2310–2320.

    PubMed  CAS  Google Scholar 

  75. Lai PC, Smith J, Bhangal G et al. Interleukin-11 reduces renal injury and glomerular NF-kappa B activity in murine experimental glomerulonephritis. Nephron Exp Nephrol 2005;101:e146–e154.

    Article  PubMed  CAS  Google Scholar 

  76. Chan RW, Lai FM, Li EK et al. Intrarenal cytokine gene expression in lupus nephritis. Ann Rheum Dis 2007;66:886–892.

    Article  PubMed  CAS  Google Scholar 

  77. Kitching AR, Turner AL, Semple T et al. Experimental autoimmune anti-glomerular basement membrane glomerulonephritis: a protective role for IFN-gamma. J Am Soc Nephrol 2004;15:1764–1774.

    Article  PubMed  CAS  Google Scholar 

  78. Satchell SC, Buchatska O, Khan SB et al. Interferon-beta reduces proteinuria in experimental glomerulonephritis. J Am Soc Nephrol 2007;18:2875–2884.

    Article  PubMed  CAS  Google Scholar 

  79. Khan SB, Cook HT, Bhangal G et al. Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int 2005;67:1812–1820.

    Article  PubMed  CAS  Google Scholar 

  80. Timoshanko JR, Sedgwick JD, Holdsworth SR et al. Intrinsic renal cells are the major source of tumor necrosis factor contributing to renal injury in murine crescentic glomerulonephritis. J Am Soc Nephrol 2003;14:1785–1793.

    Article  PubMed  CAS  Google Scholar 

  81. Feldmann M, Pusey CD. Is there a role for TNF-alpha in anti-neutrophil cytoplasmic antibody-associated vasculitis? Lessons from other chronic inflammatory diseases. J Am Soc Nephrol 2006;17:1243–1252.

    Article  PubMed  Google Scholar 

  82. Besbas N, Ozaltin F, Catal F et al. Monocyte chemoattractant protein-1 and interleukin-8 levels in children with acute poststreptococcal glomerulonephritis. Pediatr Nephrol 2004;19:864–868.

    Article  PubMed  Google Scholar 

  83. Liu ZH, Chen SF, Zhou H et al. Glomerular expression of C-C chemokines in different types of human crescentic glomerulonephritis. Nephrol Dial Transplant 2003;18:1526–1534.

    Article  PubMed  CAS  Google Scholar 

  84. Hasegawa H, Kohno M, Sasaki M et al. Antagonist of monocyte chemoattractant protein 1 ameliorates the initiation and progression of lupus nephritis and renal vasculitis in MRL/lpr mice. Arthritis Rheum 2003;48:2555–2566.

    Article  PubMed  CAS  Google Scholar 

  85. Shimizu S, Nakashima H, Masutani K et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates nephritis in MRL/lpr mice. Rheumatology (Oxford) 2004;43:1121–1128.

    Article  CAS  Google Scholar 

  86. Kulkarni O, Pawar RD, Purschke W et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J Am Soc Nephrol 2007;18:2350–2358.

    Article  PubMed  CAS  Google Scholar 

  87. Sheryanna A, Bhangal G, McDaid J et al. Inhibition of p38 mitogen-activated protein kinase is effective in the treatment of experimental crescentic glomerulonephritis and suppresses monocyte chemoattractant protein-1 but not IL-1beta or IL-6. J Am Soc Nephrol 2007;18:1167–1179.

    Article  PubMed  CAS  Google Scholar 

  88. Turner JE, Paust HJ, Steinmetz OM et al. 085CCR5 deficiency aggravates crescentic glomerulonephritis in mice. J Immunol 2008;181:6546–6556.

    PubMed  CAS  Google Scholar 

  89. Anders HJ, Belemezova E, Eis V et al. Late onset of treatment with a chemokine receptor CCR1 antagonist prevents progression of lupus nephritis in MRL-Fas(lpr) mice. J Am Soc Nephrol 2004;15:1504–1513.

    Article  PubMed  CAS  Google Scholar 

  90. Segerer S, Henger A, Schmid H et al. Expression of the chemokine receptor CXCR1 in human glomerular diseases. Kidney Int 2006;69:1765–1773.

    Article  PubMed  CAS  Google Scholar 

  91. Panzer U, Steinmetz OM, Reinking RR et al. Compartment-specific expression and function of the chemokine IP-10/CXCL10 in a model of renal endothelial microvascular injury. J Am Soc Nephrol 2006;17:454–464.

    Article  PubMed  CAS  Google Scholar 

  92. Chen YM, Hu-Tsai MI, Lin SL et al. Expression of CX3CL1/fractalkine by mesangial cells in vitro and in acute anti-Thy1 glomerulonephritis in rats. Nephrol Dial Transplant 2003;18:2505–2514.

    Article  PubMed  CAS  Google Scholar 

  93. Huber TB, Reinhardt HC, Exner M et al. Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 2002;168:6244–6252.

    PubMed  CAS  Google Scholar 

  94. Kanetsuna Y, Takahashi K, Nagata M et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am J Pathol 2007;170:1473–1484.

    Article  PubMed  CAS  Google Scholar 

  95. Wada T, Matsushima K, Kaneko S. The role of chemokines in glomerulonephritis. Front Biosci 2008;13:3966–3974.

    Article  PubMed  CAS  Google Scholar 

  96. Ostendorf T, Kunter U, Gröne HJ et al. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol 2001;12:909–918.

    PubMed  CAS  Google Scholar 

  97. Eitner F, Ostendorf T, Kretzler M et al. PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J Am Soc Nephrol 2003;14:1145–1153.

    Article  PubMed  CAS  Google Scholar 

  98. van Roeyen CR, Ostendorf T, Denecke B et al. Biological responses to PDGF-BB versus PDGF-DD in human mesangial cells. Kidney Int 2006;69:1393–1402.

    PubMed  CAS  Google Scholar 

  99. Ostendorf T, Rong S, Boor P et al. Antagonism of PDGF-D by human antibody CR002 prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol 2006;17:1054–1062.

    Article  PubMed  CAS  Google Scholar 

  100. Floege J, Eitner F, Alpers CE. A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 2008;19:12–23.

    Article  PubMed  CAS  Google Scholar 

  101. Huang XR, Chung AC, Zhou L et al. Latent TGF-beta1 protects against crescentic glomerulonephritis. J Am Soc Nephrol 2008;19:233–242.

    Article  PubMed  CAS  Google Scholar 

  102. Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA, Chen A. Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol 2007;18:1777–1788.

    Article  PubMed  CAS  Google Scholar 

  103. Song CY, Kim BC, Hong HK et al. TGF-beta type II receptor deficiency prevents renal injury via decrease in ERK activity in crescentic glomerulonephritis. Kidney Int 2007;71:882–888.

    Article  PubMed  CAS  Google Scholar 

  104. Kanemoto K, Usui J, Tomari S et al. Connective tissue growth factor participate in scar formation of crescentic glomerulonephritis. Lab Invest 2003;83:1615–1625.

    Article  PubMed  CAS  Google Scholar 

  105. Shimizu A, Masuda Y, Mori T et al. Vascular endothelial growth factor165 resolves glomerular inflammation and accelerates glomerular capillary repair in rat anti-glomerular basement membrane glomerulonephritis. J Am Soc Nephrol 2004;15:2655–2665.

    Article  PubMed  CAS  Google Scholar 

  106. Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev 2008;19:133–144.

    Article  PubMed  CAS  Google Scholar 

  107. Qi W, Chen X, Poronnik P et al. Transforming growth factor-beta/connective tissue growth factor axis in the kidney. Int J Biochem Cell Biol 2008;40:9–13.

    Article  PubMed  CAS  Google Scholar 

  108. Cooker LA, Peterson D, Rambow J et al. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis. Am J Physiol Renal Physiol 2007;293:F157–F165.

    Article  PubMed  CAS  Google Scholar 

  109. Wahab NA, Weston BS, Mason RM. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol 2005;16:340–351.

    Article  PubMed  CAS  Google Scholar 

  110. Wahab NA, Weston BS, Mason RM. Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2. Exp Cell Res 2005;307:305–314.

    Article  PubMed  CAS  Google Scholar 

  111. Liu N, Mori N, Iehara N et al. Soluble fibrin formation in the mesangial area of IgA nephropathy. Clin Exp Nephrol 2007;11:71–76.

    Article  PubMed  Google Scholar 

  112. Hertig A, Rondeau E. Role of the coagulation/fibrinolysis system in fibrin-associated glomerular injury. J Am Soc Nephrol 2004;15(4):844–853.

    Article  PubMed  Google Scholar 

  113. Cunningham MA, Kitching AR, Tipping PG et al. Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. Kidney Int 2004;66:647–654.

    Article  PubMed  CAS  Google Scholar 

  114. Nomura K, Liu N, Nagai K et al. Roles of coagulation pathway and factor Xa in rat mesangioproliferative glomerulonephritis. Lab Invest 2007;87:150–160.

    Article  PubMed  CAS  Google Scholar 

  115. Liu N, Makino T, Nogaki F et al. Coagulation in the mesangial area promotes ECM accumulation through factor V expression in MsPGN in rats. Am J Physiol Renal Physiol 2004;287:F612–F620.

    Article  PubMed  CAS  Google Scholar 

  116. Taneda S, Hudkins KL, Mühlfeld AS, Kowalewska J, Pippin JW, Shankland SJ, Alpers CE. Protease nexin-1, tPA, and PAI-1 are upregulated in cryoglobulinemic membranoproliferative glomerulonephritis. J Am Soc Nephrol 2008;19:243–251.

    Article  PubMed  CAS  Google Scholar 

  117. Tanaka M, Arai H, Liu N et al. Role of coagulation factor Xa and protease-activated receptor 2 in human mesangial cell proliferation. Kidney Int 2005;67:2123–2133.

    Article  PubMed  CAS  Google Scholar 

  118. Moussa L, Apostolopoulos J, Davenport P. Protease-activated receptor-2 augments experimental crescentic glomerulonephritis. Am J Pathol 2007;171:800–808.

    Article  PubMed  CAS  Google Scholar 

  119. Cheng H, Wang S, Jo Y et al. Overexpression of Cyclooxygenase-2 Predisposes to Podocyte Injury. J Am Soc Nephrol 2007;18:551–559.

    Article  PubMed  CAS  Google Scholar 

  120. Wu SH, Lu C, Dong L et al. Lipoxin A4 inhibits TNF-alpha-induced production of interleukins and proliferation of rat mesangial cells. Kidney Int 2005;68:35–46.

    Article  PubMed  CAS  Google Scholar 

  121. Kieran NE, Maderna P, Godson C. Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney Int 2004;65:1145–1154.

    Article  PubMed  CAS  Google Scholar 

  122. Kondo S, Shimizu M, Urushihara M et al. Addition of the antioxidant probucol to angiotensin II type I receptor antagonist arrests progressive mesangioproliferative glomerulonephritis in the rat. J Am Soc Nephrol 2006;17:783–794.

    Article  PubMed  CAS  Google Scholar 

  123. Budisavljevic MN, Hodge L, Barber K et al. Oxidative stress in the pathogenesis of experimental mesangial proliferative glomerulonephritis. Am J Physiol Renal Physiol 2003;285:F1138–F1148.

    PubMed  CAS  Google Scholar 

  124. Cattell V. Nitric oxide and glomerulonephritis. Kidney Int 2002;61:816–821.

    Article  PubMed  CAS  Google Scholar 

  125. Kanetsuna Y, Takahashi K, Nagata M et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am J Pathol 2007;170:1473–1484.

    Article  PubMed  CAS  Google Scholar 

  126. Borza DB et al. Molecular characterization of the target antigens of anti-glomerular basement membrane antibody disease. Springer Semin Immunopathol 2003;24:345–361.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Author’s research and academic efforts are supported by Grants-in-Aid for Scientific Research (C) 19,590,932 and Scientific Research (S) 16,109,005 from the Japan Society for the Promotion of Science. Author thanks Drs Masaomi Nangaku and Takashi Wada for critical reading of the corresponding parts of the text. Most of the references sited here have been published after 2003. Given a limited capacity for citation, the reference includes many recent review articles, despite numerous important original works published before 2002. The author suggests the readers to reference Chapter 29 of fifth edition and Chapter 40 of the fourth edition which reference earlier published works.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Nagata, M. (2009). Immune-mediated Glomerular Injury. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics