Skip to main content

Why are so Many Bees but so Few Digger Wasps Social? The Effect of Provisioning Mode and Helper Efficiency on the Distribution of Sociality Among the Apoidea

  • Chapter
Ecology of Social Evolution

Sociality has evolved predominantly in a few taxa within the animal kingdom. Even within the Hymenoptera, which are famous for their abundance and diversity of social life forms, eusocial species are very unevenly distributed among different families. Here we ask why within the superfamily Apoidea so few sphecid wasps but so many bees have become eusocial. We argue that the crucial difference between these two taxa is the type of resource provided for the progeny and that this has important consequences for the evolution of sociality. Sphecids provision brood cells with dead or paralyzed arthropods whereas bees gather pollen and nectar as larval food. In social Hymenoptera, workers are often smaller than the foundress es, since this saves some resources in particular at the beginning of the nest founding. However, the large size of the prey of sphecids requires a female to generate a certain minimum amount of power to bring the prey to the nest. Thus, small and/or weak females would not be successful at all and would not represent valuable helpers. In bees, however, small individuals are capable of gathering pollen at a comparatively high rate. Furthermore, the evolution of sociality might be facilitated if foundresses can save investment by providing sexuals and helpers only with the resources that are necessary for their respective task. Such a task-related investment for progeny might be much easier in bees than in sphecids, since the former can provide pollen of different plant species and different proportions of nectar whereas the latter cannot control the quality of the larval food to such an extent. The large size of the prey of sphecids has also enabled a unique strategy of oviposition for larval parasites. Flies and cuckoo wasps might oviposit on the prey while it is carried to the nest by a sphecid female. This “out-of-nest” parasitism cannot be countered by communal nesting, for example, making early steps of sociality less beneficial than in bees where this type of parasitism does not occur. We conclude that one of the most basic ecological features, the type of resource used for provisioning, might have far-reaching consequences for the evolution of sociality in the Hymenoptera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams J, Eickwort GC (1981) Nest switching and guarding by the communal sweat bee Agapostemon virescens (Hymenoptera, Halictidae). Ins Soc 28:105-116

    Google Scholar 

  • Alcock J (1975) Social interactions in the solitary wasp Cerceris simplex(Hymenoptera: Sphecidae). Behaviour 54:142-151

    Google Scholar 

  • Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 4:325-383

    Google Scholar 

  • Andersson M (1984) The evolution of eusociality. Annu Rev Ecol Syst 15:165-189

    Google Scholar 

  • Banschbach VS, Herbers JM (1996) Complex colony structure in social insects: I. Ecological determinants and genetic consequences. Evolution 50:285-297

    Google Scholar 

  • Beekman M, van-Stratum P, Lingeman R (1998) Diapause survival and post-diapause performance in bumblebee queens (Bombus terrestris). Ent Exp Appl 89:207-214

    Google Scholar 

  • Bourke AFG (1988) Worker reproduction in the higher eusocial Hymenoptera. Q Rev Biol 63:291-311

    Google Scholar 

  • Bosch J, Vicens N (2006) Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav Ecol Sociobiol 60:26-33

    Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

    Google Scholar 

  • Brockmann HJ (1994) The evolution of social behavior in insects. In: Krebs J, Davies N (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford

    Google Scholar 

  • Brockmann HJ (1997) Cooperative breeding in wasps and vertebrates: the role of ecological constraints. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge

    Google Scholar 

  • Brothers DJ (1999) Phylogeny of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea). Zool Scr 28:233-249

    Google Scholar 

  • Byers GW (1978) Nests, prey, behavior and development of Cerceris halone (Hymenoptera, Sphecidae). J Kans Ent Soc 51:818-831

    Google Scholar 

  • Choe JC, Crespi BJ (1997) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge

    Google Scholar 

  • Coelho JR (1997) Sexual size dimorphism and flight behavior in cicada killers, Sphecius speciosus. Oikos 79:371-375

    Google Scholar 

  • Coelho JR, Ladage LD (1999) Foraging capacity of the great golden digger wasp Sphex ichneumoneus. Ecol Entomol 24:480-483

    Google Scholar 

  • Craig R (1983) Subfertility and the evolution of eusociality by kin selection. J Theor Biol 100:379-398

    Google Scholar 

  • Crespi BJ, Choe JC (1997) Explanation and evolution of social systems. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 499-524

    Google Scholar 

  • Danforth BN (2002) Evolution of sociality in a primitively eusocial lineage of bees. Proc Natl Acad Sci USA 99:286-290

    PubMed  Google Scholar 

  • Evans HE (1977) Extrinsic vs intrinsic factors in the evolution of insect sociality. Bioscience 27:613-617

    Google Scholar 

  • Evans HE, O’Neill K (1988) The natural history of North American beewolves. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Field J (1992) Patterns of nest provisioning and parental investment in the solitary digger wasp Ammophila sabulosa. Ecol Entomol 17:43-51

    Google Scholar 

  • Field J (2005) The evolution of progressive provisioning. Behav Ecol 16:770-778

    Google Scholar 

  • Field J, Brace S (2004) Pre-social benefits of extended parental care. Nature 428:650-652

    PubMed  Google Scholar 

  • Field J, Foster W (1999) Helping behaviour in facultatively eusocial hover wasps: an experimental test of the subfertility hypothesis. Animal Behaviour 57:633-636

    PubMed  Google Scholar 

  • Field J, Shreeves G, Sumner S, Casiraghi M (2000) Insurance-based advantages to helpers in a tropical hover wasp. Nature 404:869-871

    PubMed  Google Scholar 

  • Freeman B (1977) Aspects of the regulation of size of the Jamaican population of Sceliphron assimile Dahlbom (Hymenoptera: Sphecidae). J Anim Ecol 46:231-247

    Google Scholar 

  • Freeman BE (1981) Parental investment and its ecological consequences in the solitary wasp Sceliphron assimile (Dahlbom) (Sphecidae). Behav Ecol Sociobiol 9:261-268

    Google Scholar 

  • Freeman B, Johnston B (1978) The biology in Jamaica of the adults of the sphecid wasp Sceliphron assimile Dahlbom. Ecol Entomol 2:39-52

    Google Scholar 

  • Frohlich D, Tepedino V (1986) Sex ratio, parental investment, and interparent variability in nest-ing success in a solitary bee. Evolution 40:142-151

    Google Scholar 

  • Gadagkar R (1990) Evolution of eusociality: the advantage of assured fitness returns. Phil Trans R Soc Lond B 329:17-25

    Google Scholar 

  • Gauld I, Bolton B (1996) The Hymenoptera. Oxford University Press, Oxford

    Google Scholar 

  • Goodell K (2003) Food availability affects Osmia pumila (Hymenoptera: Megachilidae) foraging, reproduction, and brood parasitism. Oecologia 134:518-527

    PubMed  Google Scholar 

  • Gwynne DT, Dodson GN (1983) Nonrandom provisioning by the digger wasp Palmodes laeviv-entris (Hymenoptera: Sphecidae). Ann Ent Soc Am 76:434-436

    Google Scholar 

  • Hamilton WD (1964) The genetical theory of social behaviour, I, II. J Theor Biol 7:1-52

    PubMed  Google Scholar 

  • Hamilton WD (1972) Altruism and related phenomena, mainly in social insects. Annu Rev Ecol Syst 3:193-232

    Google Scholar 

  • Hastings J (1986) Provisioning by female cicada killer wasps, Sphecius grandis (Hymenoptera Sphecidae): influence of body size and emergence time on individual provisioning success. J Kans Entomol Soc 59:262-268

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap Press, Cambridge

    Google Scholar 

  • Johnson MD (1990) Female size and fecundity in the small carpenter bee, Ceratina calcerata (Robertson) (Hymenoptera: Anthophoridae). J Kans Ent Soc 63:414-419

    Google Scholar 

  • Keller L, Passera L (1989) Size and fat content of genes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae). Oecologia 80:236-240

    Google Scholar 

  • Kim J-Y (1997) Female size and fitness in the leaf-cutter bee Megachile apicalis. Ecol Entomol 22:275-282

    Google Scholar 

  • Kim JY, Thorp RW (2001) Maternal investment and size-number trade-off in a bee, Megachile apicalis, in seasonal environments. Oecologia 126:451-456

    Google Scholar 

  • Knee WJ, Medler JT (1965) Seasonal size increase of bumblebee workers (Hymenoptera: Bombus). Can Entomol 97:1149

    Google Scholar 

  • Larsson K, Tengö J (1989) It is not always good to be large; some female fitness components in a temperate digger wasp, Bembix rostrata (Hymenoptera: Sphecidae). J Kansas Ent Soc 62:490-495

    Google Scholar 

  • Liebig J, Hölldobler B, Peeters C (1998) Are ant workers capable of colony foundation? Naturwissenschaften 85:133-135

    Google Scholar 

  • Liebig J, Monnin T, Turillazzi S (2005) Direct assessment of queen quality and lack of worker suppression in a paper wasp. Proc R Soc Lond B 272:1339-1344

    Google Scholar 

  • Lin N, Michener CG (1972) Evolution of sociality in insects. Q Rev Biol 47:131-159

    Google Scholar 

  • Matthews RW (1991) Evolution of social behavior in the sphecid wasps. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, Ithaca, NY

    Google Scholar 

  • McCorquodale D (1989) Nest defense in single- and multifemale nests of Cerceris antipodes (Hymenoptera: Sphecidae). J Ins Behav 2:267-276

    Google Scholar 

  • Melo GAR (1999) Phylogenetic relationships and classification of the major lineages of apoidea (Hymenoptera), with emphasis on the crabronid wasps. Nat Hist Mus Univ Kans 14:1-55

    Google Scholar 

  • Michener CD (2000) The bees of the world. John Hopkins University Press, Baltimore

    Google Scholar 

  • Miyanaga R, Maeta Y, Sakagami SF (1999) Geographical variation of sociality and size-linked color patterns in Lasioglossum (Evylaeus) apristum (Vachal) in Japan (Hymenoptera, Halictidae). Ins Soc 46:224-232

    Google Scholar 

  • Molumby A (1995) Dynamics of arasitism in the organ-pipe wasp, Trypoxylon politum: effects of spatial scale on parasitoid functional response. Ecol Entomol 20:159-168

    Google Scholar 

  • O’Neill K (2001) Solitary wasps. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology in social hymenoptera. Annu Rev Entomol 46:601-630

    PubMed  Google Scholar 

  • Potts S, Willmer PAT (1997) Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecol Entomol 22:319-328

    Google Scholar 

  • Potts SG, Willmer P (1998) Compact housing in built-up areas: spatial patterning of nests in aggregations of a ground-nesting bee. Ecol Entomol 23:427-432

    Google Scholar 

  • Queller DC (1989) The evolution of eusociality: reproductive head starts of workers. Proc of Natl Acad Sci USA 86:3224-3226

    Google Scholar 

  • Queller DC (1994) Extended parental care and the origin of eusociality. Proc R Soc Lond B 256:105-111

    Google Scholar 

  • Reeve HK, Peters JM, Nonacs P, Starks PT (1998) Dispersal of first “workers” in social wasps: causes and implications of an alternative reproductive strategy. Proc Natl Acad Sci USA 95:13737-13742

    PubMed  Google Scholar 

  • Richards MH, Packer L (1994) Trophic aspects of caste determination in Halictus ligatus, a primitively eusocial sweat bee. Behav Ecol Sociobiol 34:385-391

    Google Scholar 

  • Richards MH, Packer L (1995) Annual variation in survival and reproduction of the primitively eusocial sweat bee Halictus ligatus (Hymenoptera: Halictidae). Can J Zool 73:933-941

    Google Scholar 

  • Richards MH, Packer L (1996) The socioecology of body size variation in the primitively eusocial sweat bee, Halictus ligatus (Hymenoptera: Halictidae). Oikos 77:68-76

    Google Scholar 

  • Rosenheim JA (1990) Density-dependent parasitism and the evolution of aggregated nesting in the solitary hymenoptera. Ann Ent Soc Am 83:277-286

    Google Scholar 

  • Ross KG, Matthews RW (1991) The social biology of wasps. Comstock, Ithaca, NY

    Google Scholar 

  • Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187-209

    Google Scholar 

  • Roulston TH, Cane JH (2002) The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evol Ecol 16:49-65

    Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Schwarz MP, Bull NJ, Hogendoorn K (1998) Evolution of sociality in the allodapine bees: a review of sex allocation, ecology and evolution. Ins Soc 45:349

    Google Scholar 

  • Shakarad M, Gadagkar R (1997) Do social wasps choose nesting strategies based on their brood rearing abilities? Naturwissenschaften 84:79-82

    Google Scholar 

  • Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499-507

    Google Scholar 

  • Solís CR, Strassmann JE (1990) Presence of brood affects caste differentiation in the social wasp, Polistes exclamans Viereck (Hymenoptera, Vespidae). Funct Ecol 4:531-541

    Google Scholar 

  • Soucy SL, Giray T (2003) Solitary and group nesting in the orchid bee Euglossa hyacinthina (Hymenoptera, Apidae). Ins Soc 50:248

    Google Scholar 

  • Spofford MG, Kurczewski FE (1992) Counter-cleptoparasitic behaviour of species of Sphecidae, Hymenoptera, in response to Miltogrammini larviposition Diptera, Sarcophagidae. J Nat Hist 26:993-1012

    Google Scholar 

  • Stille M (1996) Queen/worker thorax volume ratios and nest-founding strategies in ants. Oecologia 105:87

    Google Scholar 

  • Strohm E (2000) Factors affecting body size and fat content in a digger wasp. Oecologia 123:184-191

    Google Scholar 

  • Strohm E, Linsenmair KE (1997) Female size affects provisioning and sex allocation in a digger wasp. Anim Behav 54:23-34

    PubMed  Google Scholar 

  • Strohm E, Linsenmair KE (2000) Allocation of parental investment among individual progeny in the European beewolf Philanthus triangulum F. (Hymenoptera, Sphecidae). Biol J Linn Soc 69:173-192

    Google Scholar 

  • Strohm E, Linsenmair KE (2001) Females of the European beewolf preserve their honeybee prey against competing fungi. Ecol Entomol 26:198-203

    Google Scholar 

  • Strohm E, Bordon-Hauser A (2003) Advantages and disadvantages of large colony size in a halictid bee—the queen’s perspective. Behav Ecol 14:546-553

    Google Scholar 

  • Strohm E, Laurien-Kehnen C, Bordon S (2001) Escape from parasitism: spatial and temporal strategies of a sphecid wasp against a specialised cuckoo wasp. Oecologia 129:50-57

    Google Scholar 

  • Sugiura N (1994) Parental investment and offspring sex ratio in a solitary bee, Anthidium septemspinosum Lepeletier (Hymenoptera: Megachilidae). J Ethol 12:131-139

    Google Scholar 

  • Sugiura N, Maeta Y (1989) Parental investment and offspring sex ratio in a solitary mason bee, Osmia cornifromns (Radzowski) (Hymenoptera, Megachilidae). Jpn J Ent 57:861-875

    Google Scholar 

  • Tepedino VJ, Torchio PF (1982) Phenotypic variability in nesting success among Osmia lignaria propinqua females in a glasshouse environment (Hymenoptera: Megachilidae). Ecol Entomol 7:453-462

    Google Scholar 

  • Torchio PF (1992) Effects of spore dosage and temperature on pathogenic expression of chalkbrood syndrome caused by Ascosphaere torchioi within larvae of Osmia lignaria propinqua (Hymenoptera: Megachilidae). Env Entomol 21:1086-1091

    Google Scholar 

  • Veenendaal RL (1987) The hidden egg of Hedychrum rutilans (Hym.: Chrysididae). Entomol Ber 47:169-171

    Google Scholar 

  • Wcislo WT (1984) Gregarious nesting of a digger wasp as a “selfish herd” response to a parasitic fly (Hymenoptera: Sphecidae; Diptera: Sacrophagidae). Behav Ecol Sociobiol 15:157-160

    Google Scholar 

  • Wcislo WT (1997) Behavioral environments of sweat bees (Halictinae) in relation to variability in social oprganization. In: Choe JC, Crespi BJ (eds) Social behavior in insects and arachnids. Cambridge University Press, Cambridge

    Google Scholar 

  • Wcislo WT, Cane JH (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu Rev Entomol 41:257-286

    PubMed  Google Scholar 

  • Wcislo WT, Danforth BN (1997) Secondarily solitary: the evolutionary loss of social behavior. TREE 12:468-474

    Google Scholar 

  • West-Eberhard MJ (1975) The evolution of social behavior by kin selection. Q Rev Biol 50:1-33

    Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: Evolutionary implications. Am Nat 128:13-34

    Google Scholar 

  • Willmer PG (1985) Size effects and hygrothermal balance and foraging patterns of a sphecid wasp, Cerceris arenaria. Ecol Entomol 10:469-479

    Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (1975) Sociobiology, the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

  • Strohm E (2000) Factors affecting body size and fat content in a digger wasp. Oecologia 123:184-191

    Google Scholar 

  • Strohm E, Linsenmair KE (1997) Female size affects provisioning and sex allocation in a digger wasp. Anim Behav 54:23-34

    PubMed  Google Scholar 

  • Strohm E, Linsenmair KE (2000) Allocation of parental investment among individual progeny in the European beewolf Philanthus triangulum F. (Hymenoptera, Sphecidae). Biol J Linn Soc 69:173-192

    Google Scholar 

  • Strohm E, Linsenmair KE (2001) Females of the European beewolf preserve their honeybee prey against competing fungi. Ecol Entomol 26:198-203

    Google Scholar 

  • Strohm E, Bordon-Hauser A (2003) Advantages and disadvantages of large colony size in a halictid bee—the queen’s perspective. Behav Ecol 14:546-553

    Google Scholar 

  • Strohm E, Laurien-Kehnen C, Bordon S (2001) Escape from parasitism: spatial and temporal strategies of a sphecid wasp against a specialised cuckoo wasp. Oecologia 129:50-57

    Google Scholar 

  • Sugiura N (1994) Parental investment and offspring sex ratio in a solitary bee, Anthidium septemspinosum Lepeletier (Hymenoptera: Megachilidae). J Ethol 12:131-139

    Google Scholar 

  • Sugiura N, Maeta Y (1989) Parental investment and offspring sex ratio in a solitary mason bee, Osmia cornifromns (Radzowski) (Hymenoptera, Megachilidae). Jpn J Ent 57:861-875

    Google Scholar 

  • Tepedino VJ, Torchio PF (1982) Phenotypic variability in nesting success among Osmia lignaria propinqua females in a glasshouse environment (Hymenoptera: Megachilidae). Ecol Entomol 7:453-462

    Google Scholar 

  • Torchio PF (1992) Effects of spore dosage and temperature on pathogenic expression of chalkbrood syndrome caused by Ascosphaere torchioi within larvae of Osmia lignaria propinqua (Hymenoptera: Megachilidae). Env Entomol 21:1086-1091

    Google Scholar 

  • Veenendaal RL (1987) The hidden egg of Hedychrum rutilans (Hym.: Chrysididae). Entomol Ber 47:169-171

    Google Scholar 

  • Wcislo WT (1984) Gregarious nesting of a digger wasp as a “selfish herd” response to a parasitic fly (Hymenoptera: Sphecidae; Diptera: Sacrophagidae). Behav Ecol Sociobiol 15:157-160

    Google Scholar 

  • Wcislo WT (1997) Behavioral environments of sweat bees (Halictinae) in relation to variability in social oprganization. In: Choe JC, Crespi BJ (eds) Social behavior in insects and arachnids. Cambridge University Press, Cambridge

    Google Scholar 

  • Wcislo WT, Cane JH (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu Rev Entomol 41:257-286

    PubMed  Google Scholar 

  • Wcislo WT, Danforth BN (1997) Secondarily solitary: the evolutionary loss of social behavior. TREE 12:468-474

    Google Scholar 

  • West-Eberhard MJ (1975) The evolution of social behavior by kin selection. Q Rev Biol 50:1-33

    Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: Evolutionary implications. Am Nat 128:13-34

    Google Scholar 

  • Willmer PG (1985) Size effects and hygrothermal balance and foraging patterns of a sphecid wasp, Cerceris arenaria. Ecol Entomol 10:469-479

    Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (1975) Sociobiology, the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strohm, E., Liebig, J. (2008). Why are so Many Bees but so Few Digger Wasps Social? The Effect of Provisioning Mode and Helper Efficiency on the Distribution of Sociality Among the Apoidea. In: Korb, J., Heinze, J. (eds) Ecology of Social Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75957-7_5

Download citation

Publish with us

Policies and ethics