Skip to main content

Language engineering and information theoretic methods in protein sequence similarity studies

  • Chapter
Computational Intelligence in Medical Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 85))

The representation of biological data as text information opened new perspectives in the evolution of biological research. Many biological sequence databases are providing detailed information about sequences allowing investigations like searches, comparison, the establishment of relations between different sequences and species. The algorithmic procedures used for data sequence analysis are coming from many areas of computational sciences. Within this book chapter, we are bringing together a diversity of language engineering techniques and those involving information theoretic principles in analyzing protein sequences from similarity perspective. After we are proposing a state of the art in the subject, presenting a survey of the different approaches identified, the attention is oriented to the two methods we experimented. The description of these methods and the experiments performed open discussions addressed to the interested reader that may think about new ideas of improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metfessel BA and Saurugger PN (1993) Pattern recognition is the prediction of protein structural class. In: Proceedings of the Twenty-Sixth Hawaii INternational Conference on System Science 1:679–688

    Article  Google Scholar 

  2. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN,BournePE (2000) The Protein Data Bank. Nucleic Acids Research (28):235–242

    Article  Google Scholar 

  3. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31:365–370

    Article  Google Scholar 

  4. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological Sequence Analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press

    Google Scholar 

  5. Koonin EV and Galperin MY (2002) Sequence-Evolution-Function Computational approaches in comparative genomics. Kluwe, Boston

    Google Scholar 

  6. Pearson WR and Lipman DJ (1988) Improved tools for biological sequence comparison. PNAS 85(8): 2444–2448

    Article  Google Scholar 

  7. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Google Scholar 

  8. G.J. Barton, (1996) Protein Sequence Alignment and Database Scanning. M.J. E. Sternberg (eds), IN: Protein Structure Prediction - a practical approach, IRL Press at Oxford University Press

    Google Scholar 

  9. Bogan-Marta A, Laskaris N, Gavrielides M, Pitas I, Lyroudia K (2005) A novel efficient protein similarity measure based on n-gram modeling. In: IEEE, IEE Second International Conference on Intelligence in Medicine and Healthcare 122–127

    Google Scholar 

  10. Ganapathiraju M, Balakrishnan N, Reddy R, Klein-Seetharaman J, (2005) Computational Biology and Language. Ambient Intelligence for Scientific Discovery, Springer-Verlag Berlin Heidelberg, Lecture Notes in Computer Science LNAI 3345:25–47

    Google Scholar 

  11. Searls DB (2002) The Language of Genes. Nature 420(6912):211-7

    Article  Google Scholar 

  12. Bolshoi A (2003) DNA Sequence Analysis Linguistic Tools: Contrast Vocabularies, Compositional Spectra and Linguistic Complexity. Appl. Bioinformatics 2(2):103–12

    Google Scholar 

  13. Wu K-P, Lin H-N, Sung T-Y and Su W-L (2003) A new Similarity Measure among Protein Sequences. IEEE Computer Society Bioinformatics Conference (CSB’03) Proceedings 347–352

    Google Scholar 

  14. Henikoff S and Henikoff JG (1992) Amino acid substitution matrices from protein block. In: Proceedings of the National Academy of Science USA 89(22):10915–10919

    Article  Google Scholar 

  15. Lachlan Coin, Alex Bateman, and Richard Durbin (2003) Enhanced protein domain discovery by using language modeling techniques from speech recognition, Proc Natl Acad Sci U S A 100(8): 4516–4520

    Article  Google Scholar 

  16. Lord PD, Stevens RD, Brass A and Goble CA (2003) Semantic similarity measures as tools for exploring the gene ontology. In: Pacific Symposium on Biocomputing, PubMed 601–612

    Google Scholar 

  17. Sarkar I, Rindflesch T (2002) Discovering Protein Similarity using Natural Language Processing, Proc AMIA Symp :677-81

    Google Scholar 

  18. The Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res 11(8):1425–33

    Google Scholar 

  19. Rada R, Mili H, Bicknell E, Blettner M (1989) Development and application of a metric on semantic nets. IEEE Transactions on Systems Management and Cybernetics, 19(1):17–30

    Article  Google Scholar 

  20. Lord PW, Stevens RD, Brass A, Goble CA. (2003) Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation, Bioinformatics Vol. 19(10):1275–1283

    Article  Google Scholar 

  21. Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. IJCAI 448–453

    Google Scholar 

  22. Lin D (1998) An information-theoretic definition of similarity. In Morgan Kaufman (EDS) Proc 15th International Conf. on Machine Learning. San Francisco, CA 296–304

    Google Scholar 

  23. Jiang JJ and Conrath DW (1998) Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc.of International Conference on Research in Computational Linguistics

    Google Scholar 

  24. Resnik P (1999) Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language” Journal of Artificial Intelligence Research, 11:95-130

    MATH  Google Scholar 

  25. Schlicker A, Domingues FS, Rahnenfhrer J, Lengauer T (2006) A new measure for functional similarity of gene products based on Gene Ontology, BMC Bioinformatics 7: 302

    Article  Google Scholar 

  26. Guo X, Shriver CD, Hu H, Liebman MN (2005) Semantic similarity-based validation of human protein-protein interactions, Computational Systems Bioinformatics Conference :149–150

    Google Scholar 

  27. Ganapathiraju MK, Klein-Seetharaman J, Balakrishnan N and Reddy R (2004) Characterization of Protein Secondary Structure. Application of latent semantic analysis using different vocabularies. IEEE Signal Processing Magazine 78–86

    Google Scholar 

  28. Bellegarda J (2000) Exploiting latent semantic information in statistical language modeling. In: IEEE Proceedings 88(8):1279–1296

    Article  Google Scholar 

  29. Landauer T, Foltx P and Laham D (1998) Introduction to latent semantic analysis. Discourse Processes 25:259–284

    Article  Google Scholar 

  30. Salton G, Wong A, and Yang CS (1975) A Vector Space Model for Automatic Indexing. Communications of the ACM, 18(11)613–620

    Article  MATH  Google Scholar 

  31. Haley D, Thomas P, Nuseibeh B, Tailor J, Lefrere P (2003) E-assesment using Lantent Semantic Analysis, Electronic Workshops in Computing, LeGE-WG

    Google Scholar 

  32. Yuan Y, Lin L, Dong Q, Wang X, Li M (2005) A Protein Classification Method Based on Latent Semantic Analysis, Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 27th Annual International Conference : 7738–7741

    Google Scholar 

  33. Dong Q, Wang X, Lin L (2005) Application of latent semantic analysis to protein remote homology detection, Bioinformatics Advance Access published online, Bioinformatics, doi:10.1093/bioinformatics/bti801

    Google Scholar 

  34. Maguitman AG, Rechtsteiner A, Verspoor K, Strauss CE, Rocha LM (2006) Large-Scale Testing of Bibliome. Informatics Using Pfam Protein Families, In: Pacific Symposium on Biocomputing 11:76-87

    Google Scholar 

  35. Tueyu F, Mostafa J, Seki K (2003) Protein association discovery in biomedical literature, Proceedings of the 3rd ACM/IEEE-CS joint conference on Digital libraries :113-115

    Google Scholar 

  36. Finn RD, Mistry J, Schuster-Bckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and services, Nucleic Acids Research, 34 Database issue D247-D251

    Google Scholar 

  37. Mulder NJ, Fleischmann W, Kanapin A, Apweiler R (2006) InterPro as a new tool for complete genome analysis: An example of comparative analysis, Biofizika 51(4):656-660

    Google Scholar 

  38. Ganapathiraju, M., V. Manoharan, et al. (2004) BLMT: Statistical Sequence Analysis using N-grams Applied Bioinformatics 3(2-3): 193-200

    Google Scholar 

  39. Benedetto D, Caglioti E, and Loreto V (2002) Language trees and zipping. Physical Review Letters 88(4):048702

    Article  Google Scholar 

  40. Chen X, Francia B, Ming L, McKinnon B and Seker A (2004) Shared information and program plagiarism detection. IEEE Transactions on Information Theory 50(7):1545–1551

    Article  Google Scholar 

  41. Grozea C (2004) Plagiarism detection with state of the art compression programs. In: CDMTCS Research Report Series

    Google Scholar 

  42. Chen X, Kwong S, and Li M (1999) A compression algorithm for DNA sequences and its applications in genome comparison. In: Genome Informatics. Universal Academy Press, Tokyo

    Google Scholar 

  43. Li M, Badger JH, Chen X, Kwong S, Kearney P, and Zhang H (2001) An information-based sequence distance and its application to whole mitochondrial genome phylogeny. Bioinformatics 17(2):149154

    Article  Google Scholar 

  44. Otu HH and Sayood K (2003) A new sequence distance measure for phylogenetic tree construction. Bioinformatics 19(16):2122–2130

    Article  Google Scholar 

  45. Li M, Chen X, Li X, Ma B, and Vitnyi PMB (2004) The similarity metric. IEEE Transactions on Information Theory 50(12):3250–3264

    Article  Google Scholar 

  46. Hategan A and Tabus I (2004) Protein is compressible. In: NORSIG2005 1992–195

    Google Scholar 

  47. Cilibrasi R and Vitanyi PMB (2005) Clustering by compression.IEEE Transactions on Information Theory 51(4):1523–1545

    Article  MathSciNet  Google Scholar 

  48. Bennett CH, Li M, and Ma B (2003) Chain letters and evolutionary histories. Scientific American 288(6):76–81

    Article  Google Scholar 

  49. Kocsor A, Kertsz-Farkas A, Kajn L, and Pongor S (2006) Application of compression-based distance measures to protein sequence classification: a methodological study. Bioinformatics 22(4):407–412

    Article  Google Scholar 

  50. Kolmogorov AN (1965) Three approaches to the definition of the concept “quantity of information”. Problemy Peredachi Informatsii 1:3–11

    MATH  MathSciNet  Google Scholar 

  51. Bennett CH, Gacs P, Li M, Vitanyi PMB, Zurek WH (1998) Information Distance, IEEE Transacations on Information Theory 44(4):1407–1423

    Article  MATH  MathSciNet  Google Scholar 

  52. Li M and Vitanyi PMB (1997) An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag, 2nd Edition

    Google Scholar 

  53. Apostolico A and Lonardi S (2000) Compression of biological sequences by greedy off-line textual substitution. In: Data Compression Conference. IEEE Computer Society Press

    Google Scholar 

  54. Chen X, Kwong S and Li M (2001) A compression algorithm for DNA sequences. IEEE-EMB Special Issue on Bioinformatics 20(4):61–66

    Google Scholar 

  55. Chen X, Li M, Ma B, and Tromp J (2002) DNACompress: Fast and effective DNA sequence compression. Bioinformatics 18:1696-1698

    Article  Google Scholar 

  56. Grumbach S and Tahi F (1993) Compression of DNA sequences. In: Data Compression Conference. IEEE Computer Society Press

    Google Scholar 

  57. Korodi G and Tabus I (2005) An efficient normalized maximum likelihood algorithm for DNA sequence compression. ACM Transactions on Information Systems 23(1):3–34

    Article  Google Scholar 

  58. Tabus I, Korodi G and Rissanen J (2003) DNA Sequence Compression Using the Normalized Maximum Likelihood Model for Discrete Regression. In: Data Compression Conference. IEEE Computer Society Press

    Google Scholar 

  59. Nevill-Manning CG and Witten IH (1999) Protein is incompressible. In: Data Compression Conference. IEEE Computer Society Press

    Google Scholar 

  60. Wang S, Schuurmans D, Peng F, Zhao F (2005) Combining Statistical Language Models via the Latent Maximum Entropy Principle. Machine Learning, Springer Netherlands 60(1-3):229–250

    Google Scholar 

  61. Kang S, Wang S, Greiner R, Schuurmans D, Cheng L (2004) Exploiting syntactic, semantic and lexical regularities in language modeling via directed Markov random fields. International Symposium on Chinese Spoken Language Processing : 305–308

    Google Scholar 

  62. Wang S, Schuurmans D, Pengun F and Zhao Y (2003) Semantic N-gram Language Modeling With The Latent Maximum Entropy Principle. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-03)

    Google Scholar 

  63. Ganapathiraju M, Weisser D, Rosenfeld R, Carbonell J, Reddy R, Klein-Seetharaman J (2002) Comparative n-gram analysis of whole-genome protein sequences. Proc. HLT, San Diego 2002

    Google Scholar 

  64. Liu Y, Carbonell J, et al. (2004) Context Sensitive Vocabulary And its Application in Protein Secondary Structure Prediction. ACM SIGIR Conference.

    Google Scholar 

  65. Cheng, B., J. Carbonell, et al. (2004). A Machine Text-Inspired Machine Learning Approach for Identification of Transmembrane Helix Boundaries. 15th International Symposium on Methodologies for Intelligent Systems, Saratoga Springs, New York, USA

    Google Scholar 

  66. Cheng, B., J. Carbonell, et al. (2005) Protein Classification based on Text Document Classification Techniques. Proteins - Structure, Function and Bioinformatics 58(4): 955-70

    Article  Google Scholar 

  67. Burkhardt S, Crauser A, Ferragina P, Lenhof HP, Rivals E, Vingron M (1999). q-gram Based Database Searching Using a Suffix Array (QUASAR). Third Annual International Conference on Computational Molecular Biology, RECOMB’99, Lyon, France.

    Google Scholar 

  68. Van Compernolle D (2003) Spoken Language Science and Technology, course material

    Google Scholar 

  69. Manning CD and Schtze H (2000) Foundations of statistical natural language processing. Massachusetts Institute of Technology Press, Cambridge, Massachusetts London, England 554–588

    Google Scholar 

  70. Brown PF, Della Pietra AS, Della Pietra VJ, Mercer Robert LR and Jennifer CL (1992) An estimation of an upper bound for the entropy of English. In Association for Computational Linguistics, Yorktown Heights, NY 10598

    Google Scholar 

  71. Jurafsky D and Martin J (2000) Speech and Language Processing. Prentice Hall(EDS)

    Google Scholar 

  72. Bogan-Marta A, Gavrielides M, Pitas I and Lyroudia K (2005) A New Statistical Measure of Protein Similarity based on Language Modeling. In: IEEE International Workshop on Genomic Signal Processing and Statistics

    Google Scholar 

  73. Bogan-Marta A, Pitas I, Lyroudia K (2006) Statistical Method of Context Evaluation for Biological Sequence Similarity. In: IEEE Conference on ‘Artificial Intelligence in Theory and Practice’, IFIP World Computer Congress 11:1–10

    Google Scholar 

  74. Liao L and Noble W S (2003) Combining pairwise sequence similarity and support vector machines for detecting remoteprotein evolutionary and structural relationships. Journal of Computational Biology 10:857–868

    Article  Google Scholar 

  75. Schffer A, Aravind L, Madden L, Shavirin S, Spouge J, Wolf Y, Koonin E, Altschul S (2001). Improving the accuracy of PSI-BLAST protein data-base searches with composition-based statistics and other refinements. Nucleic Acids Res 29(14):2994–3005

    Article  Google Scholar 

  76. Cover TM and Thomas AJ (1991) Elements of information theory, New York

    Google Scholar 

  77. Huffman DA (1952) A method for the construction of minimum redundancy codes. Proceedings of the IRE 40:1098–1101

    Article  Google Scholar 

  78. Rissanen J (1976) Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and Development 20:198–203

    Article  MATH  MathSciNet  Google Scholar 

  79. Ross SM (1996) Stochastic processes, 2nd Edition, New York

    Google Scholar 

  80. Hategan A and Tabus I (2005) Detecting local similarity based on lossless compression of protein sequences. In: International Workshop on Genomic Signal Processing 95–99

    Google Scholar 

  81. Yu YK, Wootton JC and Altschul SF (2003) The compositional adjustment of amino acid subtitution matrices. PNAS 100(26):15688–15693

    Article  Google Scholar 

  82. Cao MD, Dix TI, Allison L, Mears C (2007) A simple statistical algorithm for biological sequence compression. In: DCC’07, 43–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogan-Marta, A., Hategan, A., Pitas, I. (2008). Language engineering and information theoretic methods in protein sequence similarity studies. In: Kelemen, A., Abraham, A., Liang, Y. (eds) Computational Intelligence in Medical Informatics. Studies in Computational Intelligence, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75767-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75767-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75766-5

  • Online ISBN: 978-3-540-75767-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics