Skip to main content

A Moving-Boundary Tracking Algorithm for Inviscid Compressible Flow

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

This chapter is concerned with the development of a Cartesian-grid approach for the numerical simulation of general (single or multicomponent) compressible flow problems with complex moving geometries. As a preliminary, in this work, we are interested in a class of moving objects that undergo solely rigid-body motion with the propagation speeds determined by either a given function of time or the Newton’s second law of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arienti, P. Hung, E. Morano, and J.E. Shepherd. A level-set approach to Eulerian-Lagrangian coupling. J. Comput. Phys., 185:213–251, 2003.

    Article  MATH  Google Scholar 

  2. S.A. Bayyuk, K.G. Powell, and B. van Leer. An algorithm for simulation of flows with moving boundaries and fluid-structure interactions. AIAA paper CP-97-1771, 1997.

    Google Scholar 

  3. M.-H. Chung. A level set approach for computing solutions to inviscid compressible flow with moving solid boundary using fixed Cartesian grids. Int. J. Numer. Meth. Fluids, 36:373–389, 2001.

    Article  MATH  Google Scholar 

  4. J. Falcovitz, G. Alfandary, and G. Hanoch. A two-dimensional conservation laws scheme for compressible flows with moving boundaries. J. Comput. Phys., 138:83–102, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Forrer and M. Berger. Flow simulations on Cartesian grids involving complex moving geometries. In Hyperbolic Problems: Theory, Numerics, Applications, pages 315–324. Birkh{äuser-Verlag, 1999. Intl. Ser. of Numer. Math., Vol. 130.

    Google Scholar 

  6. R.J. LeVeque. High resolution finite volume methods on arbitrary grids via wave propagation. J. Comput. Phys., 78:36–63, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.J. LeVeque and K.-M. Shyue. Two-dimensional front tracking based on high resolution wave propagation methods. J. Comput. Phys., 123:354–368, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.M. Murman, M.J. Aftosmis, and J. Berger. Implicit approaches for moving boundaries in a 3-D Cartesian method. AIAA-2003-1119.

    Google Scholar 

  9. P.L. Roe. Approximate Riemann solvers, parameter vector, and difference scheme. J. Comput. Phys., 43:357–372, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  10. K.-M. Shyue. An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys., 142:208–242, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Yang, D.M. Causon, D.M. Ingram, R. Saunders, and P. Batten. A Cartesian cut cell method for compressible flows- Part B: moving body problems. Aeronaut. J, 101:57–65, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shyue, K.M. (2008). A Moving-Boundary Tracking Algorithm for Inviscid Compressible Flow. In: Benzoni-Gavage, S., Serre, D. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75712-2_104

Download citation

Publish with us

Policies and ethics