Skip to main content

Role of Microbial Diversity for Soil, Health and Plant Nutrition

  • Chapter
Molecular Mechanisms of Plant and Microbe Coexistence

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

Soil provides the medium for root development, and with the exception of carbon, hydrogen, oxygen and some nitrogen, plants depend on soil for all other nutrients and water. Soils develop by the disintegration of rocks, and minerals therein, through biotic actions of the microbes and the fauna sustained by them. Earlier, only the physical and chemical properties of soil were considered important. However, the role of soil biodiversity in maintaining fertility, and the interdependence of soil biological activities with physical and chemical characteristics is well recognized now (Abbott and Murphy 2003; Fitter 2005; Suzuki et al. 2005; Madsen 2005; Manlay et al. 2007). Physical properties and the amount of soil organic matter (SOM) determine the microbial diversity that varies with depth, and soil health. SOM adds to soil fertility, water retention and has a great influence on the growth of the above ground vegetation. Biological indicators such as microbial biomass, soil respiration, enzyme activities and microbial diversity indicate soil health. Significance of soil biodiversity for sustainability of the farming systems has been discussed at length (Brassard et al. 2007). Microbial diversity is an excellent indicator of soil health (Nielsen and Winding 2002). They report that variation in microbial population or activities precede changes that can be noticed in some cases as early signs of soil degradation or amelioration. Water and nutrient supply from soil, particularly N and P, determine the plant growth both in natural and agro-ecosystems. The above ground vegetation is the ultimate source of C for the microbes in the rhizosphere that, in turn, support the macro-fauna. Thus, the above ground vegetation influences the below ground microbial community structure and soil properties (Orwin and Wardale 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Murphy DV (eds) (2003) Soil biological fertility: a key to sustainable land use in agriculture. Springer, Berlin Heidelberg New York, p 276

    Google Scholar 

  • Adam D (2001) Royal Society disputes value of carbon sinks. Nature 412:108

    PubMed  Google Scholar 

  • Ali M (1999) Evaluation of green manure technology in tropical low land rice system. Field Crop Res 61:61-78

    Google Scholar 

  • Al-Mallah MK, Davey MR, Cocking EC (1989) Formation of nodular structures on rice seedlings by rhizobia. J Expt Bot 40:473-478

    Google Scholar 

  • Ammann K (2005) Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol 23:388-394

    PubMed  Google Scholar 

  • Austin S, Bingham ET, Mathew DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L) expressing α-amylase and manganese dependent peroxidase. Euphytica 85:381-393

    Google Scholar 

  • Bainton NJ, Lynch JM, Naseby D, Way JA (2004) Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual Biocontrol mechanisms. Microbial Ecol 48:349-357

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Concepcion AA, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761-1778

    PubMed  Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk JD (2005) Carbon losses from all soils across England and Wales 1978-2003. Nature 437:245-248

    PubMed  Google Scholar 

  • Bhatia CR, Mitra R (1998) Biosafety of transgenic crop plants. Proc Indian Natl Sci Acad B64:293-318

    Google Scholar 

  • Bhatia CR, Nichterlein K, Maluszynski M (2001) Mutations affecting nodulation in grain legumes and their potential in sustainable cropping systems. Euphytica 120:415-432

    Google Scholar 

  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329-337

    Google Scholar 

  • Brussard L, de Ruiter PC, Brown GC (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233-244

    Google Scholar 

  • Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 5:441-452

    PubMed  Google Scholar 

  • Caetano-Annoles G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345-382

    Google Scholar 

  • Callaghan MO, Gerard EM, Waipara NW, Young SD, Glare TR, Barell PJ, Conner AJ (2005) Microbial communities of Solanum tuberosum and magainin-producing transgenic lines. Plant Soil 266:47-56

    Google Scholar 

  • Chandler M (2006) Molecular biology: singled out for integration. Nature 440:1121-1122

    Google Scholar 

  • Chen X, Hutley LB, Eamus D (2005) Soil organic carbon content at a range of north Australian tropical savannas with contrasting site histories. Plant Soil 268:161-171

    Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11: 302-308

    PubMed  Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environ-ment: overview of ecological risk assessment. Plant J 33:19-46

    PubMed  Google Scholar 

  • Copley J (2000) Ecology goes underground. Nature 406:452-454

    PubMed  Google Scholar 

  • Day BR, McAlwin CB, Loh JT, Denny RL, Wood TC, Young ND, Stacey G (2000) Differential expression of two soybean apyrases, one of which is an early nodulin. Mol Plant Microbe Interact 13:1053-1070

    PubMed  Google Scholar 

  • Dey M, Datta SK (2002) Promiscuity of hosting nitrogen fixation in rice: an overview from the legume perspective. Critical Rev Biotechnol 23:281-314

    Google Scholar 

  • De Leij FAAM, Sutton EJ, Whipps JM, Fenlon JS, Lynch JM (1995) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial population of wheat. Appl Environ Microbiol 61:3443-3453

    PubMed  Google Scholar 

  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net primary production of a forest eco-system with experimental CO2 enrichment. Science 284:1177-1179

    PubMed  Google Scholar 

  • Deutschbauer AM, Dylan Chivian D, Arkin AP (2006) Genomics for environmental microbiol-ogy. Curr Opin Biotechnol 17:229-235

    PubMed  Google Scholar 

  • Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feed back mechanism limiting plant response to elevated carbon dioxide. Nature 364:616-617

    Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume base cropping systems have reduced carbon and nitrogen losses. Nature 396:262-265

    Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231-243

    Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369-377

    Google Scholar 

  • Fontaine SB, Barot SB (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075-1087

    Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diver-sity and high metal toxicity in soil. Science 309:1387-1390

    PubMed  Google Scholar 

  • George TS, Richardson AE, Smith JB, Hadobas PA, Simpson RJ (2005a) Expression of a fungal phytase gene in Ncotiana tabaccum improves phosphorus nutrition of plants grown in amended soils. Plant Biotech J 3:129-140

    Google Scholar 

  • George TS, Richardson AE, Smith JB, Hadobas PA, Simpson RJ (2005b) Limitations to the poten-tial of transgenic Trifolium subterraneum L. plants that exude phytase when grown in soils with a range of organic P content. Plant Soil 258:263-274

    Google Scholar 

  • Gewin V (2006) Genomics: discovery in the dirt. Nature 439:384-386

    PubMed  Google Scholar 

  • Glandorf DCM, Verheggen P, Jansen T, Jorritsma LS, Thomashow LS, Leeflang P, Smit E, Wernars K, Lauerijs E, Thomas-Oates JE, Bakker PAHM, van Loon LC (2001) Effect of genetically modified Psedomonas putida WCS358r on the fungal rhizosphere microfllora of field grown wheat. Appl Environ Microbiol 67:3371-3378

    PubMed  Google Scholar 

  • Gresshoff PM (1993) Molecular genetic analysis of nodulation genes in soybean. Plant Breed Rev 11:275-318

    Google Scholar 

  • Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4-lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68:1325-1335

    PubMed  Google Scholar 

  • Högberg, P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photo-synthesis drives soil respiration. Nature 411:789-792

    PubMed  Google Scholar 

  • Hopkins A, Prado D (2007) Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review. Grass Forage Sci 62:118-126

    Google Scholar 

  • Hu S, Chapin FS, Firestone MK, Fields CB, Chiariello NR (2001) Nitrogen limitation of micro-bial decomposition in grassland under elevated CO2. Nature 409:188-190

    PubMed  Google Scholar 

  • Hu S, Wu J, Burkey KO, Firestone MK (2005) Plant and microbial N acquisition under elevated atmos-pheric CO2 in two mesocosm experiments with annual grasses. Global Change Biol 11:213-223

    Google Scholar 

  • Janzen HH (2006) The soil carbon dilemma: shall we hoard it or use it? Soil Biol Biochem 38:419-424

    Google Scholar 

  • Johansson JF, Paul LR, Roger D, Finlay RD (2004) Microbial interactions in the mycorrhizo-sphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1-13

    PubMed  Google Scholar 

  • Kirchmann H, Thorvaldsson G (2000) Challenging targets for future agriculture. Eur J Agron 12:145-161

    Google Scholar 

  • Kohler F, Hamelin J, Gillet F, Gobat JM, Butler A (2005a) Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying dis-turbance. Plant Soil, 278:205-221

    Google Scholar 

  • Kohler F, Hamelin J, Gillet F, Gobat JM, Butler A (2005b) Soil microbial community changes in wooded mountain pastures due to simulated effects of cattle grazing. Plant Soil 278: 327-340

    Google Scholar 

  • Koskella JS (2002) Larvicidal toxins from Bacillus thuringiensis subspp krustaki, morisoni (strain tenebrionis) and israelensis have no microbicidal or microstatic activity against selected bac-teria, fungi and algae in vitro. Can J Microbiol 48:262-267

    PubMed  Google Scholar 

  • Li Y, Xu M, Zou X, Xia Y (2005) Soil CO2 efflux and fungal and bacterial biomass in a plantation and a secondary forest in wet tropics in Puerto Rico. Plant Soil 268:151-160

    Google Scholar 

  • Liu B, Zeng Q, Yan F, Xu H, Xu C (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1-13

    Google Scholar 

  • Lupwayi NJ, Hanson KG, Harker KN, Clayton GW, Blackshaw RE, O’Donovan JT, Johnson EN, Gan Y, Irvine RB, Monreal MA (2007) Soil microbial biomass, functional diversity and enzyme activity in glyphosate-resistant wheat-canola rotations under low-disturbance direct seeding and conventional tillage. Soil Biol Biochem 39:1418-1427

    Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004). Microbial divesity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic organisms. Biol Fertil Soils 40:363-385

    Google Scholar 

  • Madsen EL (2005) Identifying microorganisms responsible for ecologically significant biogeo-chemical processes. Nat Rev Microbiol 3:439-446

    PubMed  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:849-851

    Google Scholar 

  • Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217-233

    Google Scholar 

  • Mercier A, Kay E, Simonet P (2006) Horizontal gene transfer by natural transformation. In: Nannipieri P, Small K (eds) Nucleic acids and proteins in soil. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Milling A, Smalla K, Maidl FX, Schloter M, Munch JC (2005) Effect of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266:23-39

    Google Scholar 

  • Mitra R, Bhatia CR (1982) Bioenergetic considerations in breeding for insect resistance in plants. Euphytica 31:429-437

    Google Scholar 

  • Moenne-Locoz Y, Tichy HV, O’Donnell A, Simson R, O’Gara F (2001) Impact of 2,4-diacetyl-phloroglucinol producing biocontrol strain Pseudomonas fluoresces F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the roots of field grown sugar beet seedlings. Appl Environ Microbiol 67:3418-3425

    Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe inter-actions in the rhizosphere. J Exp Bot 56:1729-1739

    PubMed  Google Scholar 

  • Morrissey JP, Dow JM, G. Louise Mark GL, O’Gara F (2004) Are microbes at the root of a solu-tion to world food production? EMBO Rep 5:922-926

    PubMed  Google Scholar 

  • Mraschner H, Römheld V (2001) Root induced changes in the availability of micronutrients in the rhizosphere. In: Waise Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 557-581

    Google Scholar 

  • Mudge SR, Smith FW, Richardson AE (2003) Root specific and phosphate regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Sci 165:871-878

    Google Scholar 

  • Nannipieri P, Smalla K (eds) (2006) Nucleic acids and proteins in soil. Springer, Berlin Heidelberg New York, p 458

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655-670

    Google Scholar 

  • Natsch A, Keel C, Hebecker N, Laasik E, Défago G (1998) Impact of Pseudomonas fluorescens strain CHA0 and a derivative with improved biocontrol activity on the culturable resident bac-terial community on cucumber roots. FEMS Microbiol Ecol 27(4):365-380

    Google Scholar 

  • Nautiyal CS, Johri JK, Singh HB (2002) Survival of the rhizosphere - competent biocontrol strain Pseudomonas fluorescens NBRI2650 in the soil and phytosphere. Can J Microbiol 48: 588-601

    Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. NERI Technical Report No. 388. National Environmental Research Institute, Ministry of the Environment, Denmark URL: http://www.dmu.dk

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GS (2001) Soil fertility limits carbon sequestration by forest ecosystem in a CO2 enriched atmosphere. Nature 411:469-472

    PubMed  Google Scholar 

  • Orwin KH, Wardle DA (2005) Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance. Plant Soil 278:205-221

    Google Scholar 

  • Raynaud X, Lata JC, Leadley PW (2006) Soil microbial loop and nutrient uptake by plants: a test using a coupled C:N model of plant-microbial interactions. Plant Soil 287:95-116

    Google Scholar 

  • Reay D, Sabine C, Smith P, Hymus G (2007) Climate change spring-time for sinks. Nature 446:727-728

    PubMed  Google Scholar 

  • Reddy PM, Aggarwal RK, Ramos MC, Ladha JK, Brar DS, Kouchi H (1999) Widespread occur-rence of the homologs of the early nodulin (ENOD) genes in Oryza species and related grasses. Biochem Biophys Res Commun 258:148-154

    PubMed  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922-925

    PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:1-10

    Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541-2547

    PubMed  Google Scholar 

  • Sagan MT, Huguet TG, Duc G (1994) Phenotypic characterization and classification of nodulation mutants of pea (Pisum sativum L.). Plant Sci 100:59-70

    Google Scholar 

  • Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworm, nematodes, protozoa, bacteria, fungi in soil. Soil Biol Biochem 33:1225-1230

    Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999) Transgenic plants - insecticidal toxin in root exudates from Bt. corn. Nature 402:480

    PubMed  Google Scholar 

  • Sayre P, Seidler RJ (2005) Application of GMO in the US EPA research and regulatory considera-tions related to soil systems. Plant Soil 275:77-91

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanism of carbon exchange by terrestrial ecosystems. Nature 414:169-172

    PubMed  Google Scholar 

  • Schlesinger WH (1999) Carbon sequestration in soils. Science 284:209

    Google Scholar 

  • Schulze ED, Freibauer A (2005) Carbon unlocked from soils. Nature 437:205-206

    PubMed  Google Scholar 

  • Schulze ED, Pöschel G (2005) Bacterial inoculation of maize affects carbon allocation to roots and carbon turnover in the rhizosphere. Plant Soil 267:235-241

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425-448

    PubMed  Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms: pure and applied aspects. Chapman and Hall, London Suzuki C, Kunito T, Aono T, Liu CT, Oyaizu H (2005) Microbial indices of soil fertility. J Appl Microbiol 98:1062-1074

    Google Scholar 

  • Swank JC, Below FE, Lambert RJ, Hageman RJ (1982) Interaction of carbon and nitrogen metabolism in productivity of maize. Plant Physiol 70:1185-1190

    PubMed  Google Scholar 

  • Tesfaye M, Denton MD, Samac D, Vance CP (2005) transgenic alfalfa secretes endochitinase protein to the rhizosphere. Plant Soil 269:233-243

    Google Scholar 

  • Thompson IP, Lilley AK, Ellis RJ, Bramwell PA, Bailey MJ (1995) Survival colonization and dis-persal of genetically modified Pseudomonas fluorescens SBW25 in the phytosphere of field grown sugar beet. Nature Bio/Technol 13:1493-1497

    Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environ-ment change. Science 292:281-284

    PubMed  Google Scholar 

  • Timms-Wilson TM, Kilshaw K, Bailey MJ (2004) Risk assessment for engineered bacteria used in biocontrol of fungal diseases in agricultural crops. Plant Soil 266:57-67

    Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity-magnitude, dynamics, and con-trolling factors. Science 296:1064-1066

    PubMed  Google Scholar 

  • Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2005) Development of model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69-75

    Google Scholar 

  • Uren NC (2001) Types, amounts and possible functions of compounds released into rhizosphere by soil grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp19-40

    Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity. Nature 396:69-72

    Google Scholar 

  • Vercesi ML, Krogh PH, Holmstup M (2006) Can Bacillus thuringiensis (Bt) corn residues and Bt-corn plants affect life history traits in the earthworm Aporrectodea calliginosa? Appl Soil Ecol 32:180-187

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44-51

    PubMed  Google Scholar 

  • Wani SP, Rupella OP, Lee KK (1995) Sustainable agriculture in the semi-arid tropics through bio-logical nitrogen fixation in grain legumes. Plant Soil 174:29-49

    Google Scholar 

  • Weisskopf L, Fromin N, Tomasi N, Aragno M, Matinoia E (2005) Secretion activity of white lupines cluster roots influences bacterial abundance, function and community structure. Plant Soil 268:181-194

    Google Scholar 

  • Whipps JM 1990 Carbon economy. In: Lynch JM (ed) The rhizosphere. John Wiley, Chichester, pp 59-99

    Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088-2093

    PubMed  Google Scholar 

  • Wu G, Truska M, Datla N, Vrinten P, Bauer J, Zabk T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain fatty acids in plants. Nature Biotechnol 23:1013-1017

    Google Scholar 

  • Wu L, McGechan MB, McRoberts N, Baddeley JA, Watson CA (2007) SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling—model description. Ecol Model 200:343-359

    Google Scholar 

  • Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713-1731

    PubMed  Google Scholar 

  • Zak DR, Pregitzer K, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feed back between carbon and nitrogen cycles. Plant Soil 151:105-117

    Google Scholar 

  • Zimmermann P, Zardi G, Lehmann M, Zelder C, Amrhein N, Frossard E, Bucher M (2003) Engineering the root-soil interface via targeted expression of a synthetic phytase gene in tri-choblasts. Plant Biotechnol J 1:353-360

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhatia, C.R. (2008). Role of Microbial Diversity for Soil, Health and Plant Nutrition. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_2

Download citation

Publish with us

Policies and ethics