Skip to main content

Shifting Paradigms in Pseudomonas aeruginosa Biofilm Research

  • Chapter
Bacterial Biofilms

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 322))

Biofilms formed by Pseudomonas aeruginosa have long been recognized as a challenge in clinical settings. Cystic fibrosis, endocarditis, device-related infections, and ventilator-associated pneumonia are some of the diseases that are considerably complicated by the formation of bacterial biofilms, which are resistant to most current antimicrobial therapies. Due to intense research efforts, our understanding of the molecular events involved in P. aeruginosa biofilm formation, maintenance, and antimicrobial resistance has advanced significantly. Over the years, several dogmas regarding these multicellular structures have emerged. However, more recent data reveal a remarkable complexity of P. aeruginosa biofilms and force investigators to continually re-evaluate previous findings. This chapter provides examples in which paradigms regarding P. aeruginosa biofilms have been challenged, reflecting the need to critically re-assess what is emerging in this rapidly growing field. In this process, several avenues of research have been opened that will ultimately provide the foundation for the development of preventative measures and therapeutic strategies to successfully treat P. aeruginosa biofilm infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  PubMed  CAS  Google Scholar 

  • Baltimore R, Christie C, Smith G (1989) Immunohistological localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 140:1650–1661

    PubMed  CAS  Google Scholar 

  • Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet 2:497–500

    Article  Google Scholar 

  • Bollert FG, Paton JY, Marshall TG, Calvert J, Greening AP, Innes JA (1999) Recombinant DNase in cystic fibrosis: a protocol for targeted introduction through n-of-1 trials. Scottish Cystic Fibrosis Group. Eur Respir J 13:107–113

    Article  PubMed  CAS  Google Scholar 

  • Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664

    Article  PubMed  CAS  Google Scholar 

  • Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  PubMed  CAS  Google Scholar 

  • Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646

    Article  PubMed  CAS  Google Scholar 

  • Bullen JJ, Rogers HJ, Spalding PB, Ward CG (2005) Iron and infection: the heart of the matter. FEMS Immunol Med Microbiol 43:325–330

    Article  PubMed  CAS  Google Scholar 

  • Chambless JD, Hunt SM, Stewart PS (2006) A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol 72:2005–2013

    Article  PubMed  CAS  Google Scholar 

  • Chitambar CR, Narasiham J (1991) Targeting iron-dependent DNA synthesis with gallium and transferrin-gallium. Pathobiology 59:3–10

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infection. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • D’Argenio DA, Calfee MW, Rainey PB, Pesci EC (2002) Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184:6481–6489

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH (1998) The involvement of cell-to-cell signals in the development of bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • deBeer DS, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilms structures on oxygen distribution and mass transport. Biotechn Bioeng 43:1131–1138

    Article  Google Scholar 

  • Deretic V, Schurr MJ, Yu H (1995) Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 3:351–356

    Article  PubMed  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:176–193

    Article  CAS  Google Scholar 

  • Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743

    Article  PubMed  CAS  Google Scholar 

  • Field TR, White A, Elborn JS, Tunney MM (2005) Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Eur J Clin Microbiol Infect Dis 24:677–687

    Article  PubMed  CAS  Google Scholar 

  • Fonseca AP, Extremina C, Fonseca AF, Sousa JC (2004) Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 53:903–910

    Article  PubMed  CAS  Google Scholar 

  • Friedman L, Kolter R (2004a) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690

    Article  PubMed  CAS  Google Scholar 

  • Friedman L, Kolter R (2004b) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465

    Article  PubMed  CAS  Google Scholar 

  • Gavin PJ, Suseno MT, Cook FV, Peterson LR, Thomson RB Jr (2003) Left-sided endocarditis caused by Pseudomonas aeruginosa: successful treatment with meropenem and tobramycin. Microbiol Infect Dis 47:427–430

    Article  CAS  Google Scholar 

  • Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34:1865–1868

    PubMed  CAS  Google Scholar 

  • Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256

    PubMed  Google Scholar 

  • Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) The signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745–754

    Article  PubMed  CAS  Google Scholar 

  • Gordon CA, Hodges NA, Marriott C (1988) Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 22:667–674

    Article  PubMed  CAS  Google Scholar 

  • Govan RJW, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    PubMed  CAS  Google Scholar 

  • Haagensen JAJ, Klausen M, Ernst RK, Miller SI, Folkesson A, Tolker-Nielsen T, Molin S (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189:28–37

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW, Speert DP (2000) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatments. Drug Resist Update 3:247–255

    Article  CAS  Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401

    Article  PubMed  CAS  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BKM, Molin S (2000) Quantification of biofilm structures by the novel computer program by the novel computer program COMSTAT. Microbiology 146:2395–2407

    PubMed  CAS  Google Scholar 

  • Heydorn A, Ersboll BK, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017

    Article  PubMed  CAS  Google Scholar 

  • Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14422–14427

    Article  PubMed  CAS  Google Scholar 

  • Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Hoiby N (2006) P. aeruginosa in cystic fibrosis patients resist host defenses, antibiotics. Microbe 1:571–577

    Google Scholar 

  • Hoiby N, Johansen HK, Moser C, Song Z, Ciofu O, Kharazmi A (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Ishida Y, Kurosaka Y, Otani T, Sato K, Kobayashi H (1998) In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:1641–1645

    PubMed  CAS  Google Scholar 

  • Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475

    Article  PubMed  CAS  Google Scholar 

  • Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467–2473

    Article  PubMed  CAS  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y, Thoendel M, Olakami O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888

    Article  PubMed  CAS  Google Scholar 

  • Kirisits MJ, Prost L, Starkey M, Parsek MR (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821

    Article  PubMed  CAS  Google Scholar 

  • Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003a) Biofilm formation by Pseudomonas aeruginosa wild type, flagella, and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  PubMed  CAS  Google Scholar 

  • Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003b) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68

    Article  PubMed  CAS  Google Scholar 

  • Lam J, Chan R, Lam K, Costerton JW (1980) Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28:546–556

    PubMed  CAS  Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optional sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    PubMed  CAS  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    Article  PubMed  CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484–19489

    Article  PubMed  CAS  Google Scholar 

  • Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem 241:3845–3851

    PubMed  CAS  Google Scholar 

  • Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ (2006) Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure post attachment. J Bacteriol 188:8213–8221

    Article  PubMed  CAS  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • Mah TF, Pitts B, Pellok B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa M, Greenberg EP (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186:4449–4456

    Article  PubMed  CAS  Google Scholar 

  • Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O-acetylation in the formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Overhage J, Schemionek M, Webb JS, Rehm BHA (2005) Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation. Appl Environ Microbiol 71:4407–4413

    Article  PubMed  CAS  Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechn Bioeng 58:101–116

    Article  CAS  Google Scholar 

  • Potera C (1999) Forging a link between biofilms and disease. Science 283:1837–1839

    Article  PubMed  CAS  Google Scholar 

  • Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309–322

    Article  PubMed  CAS  Google Scholar 

  • Ratjen F, Paul K, van Koningsbruggen S, Breitenstein S, Rietschel E, Nikolaizik W (2005) DNA concentrations in BAL fluid of cystic fibrosis patients with early lung disease: influence of treatment with streptodornase alpha. Pediatr Pulmonol 39:1–4

    Article  PubMed  CAS  Google Scholar 

  • Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 27:887–892

    Article  PubMed  CAS  Google Scholar 

  • Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957

    Article  PubMed  CAS  Google Scholar 

  • Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1997) Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43:340–345

    Article  PubMed  CAS  Google Scholar 

  • Shrout J, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum-sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764

    Article  PubMed  CAS  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  PubMed  CAS  Google Scholar 

  • Stapper AP, Narasimhan G, Ohman DE, Barakat JH, Hentzer M, Molin S, Kharazmi A, Hoiby N, Mathee K (2004) Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53:679–690

    Article  PubMed  CAS  Google Scholar 

  • Steinberger RE, Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS, Peyton BM, Drury WJ, Murga R (1993) Quantitative observations of the heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59:327–329

    PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix–an immobilized by dynamic microbial environment. Trends Microbiol 9:222–227

    Article  PubMed  CAS  Google Scholar 

  • Szmolay B, Klapper I, Dockery J, Stewart PS (2005) Adaptive responses to antimicrobial agents in biofilms. Environ Microbiol 7:1186–1191

    Article  CAS  Google Scholar 

  • Vasseur P, Vallet-Gely I, Soscia C, Genin S, Filloux A (2005) The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151:985–997

    Article  PubMed  CAS  Google Scholar 

  • Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C, Molin S, Bleves SL, Lazdunski A, Lory S, Filloux A (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103:171–176

    Article  PubMed  CAS  Google Scholar 

  • Vrany J, Stewart PS, Suci P (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-transport characteristics. Antimicrob Agents Chemotherap 41:1352–1358

    CAS  Google Scholar 

  • Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701

    Article  PubMed  CAS  Google Scholar 

  • Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemotherap 47:317–323

    Article  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  PubMed  CAS  Google Scholar 

  • Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton model. FEMS Microbiol Ecol 22:1–16

    Article  CAS  Google Scholar 

  • Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer K, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas J, Randell S, Boucher R, Doring G (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325

    PubMed  CAS  Google Scholar 

  • Wozniak DJ, Keyser RA (2004) Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa. Chest 125:62S–69S

    Article  PubMed  CAS  Google Scholar 

  • Wozniak DJ, Wyckoff TJO, Starkey M, Keyser RA, Azadi P, O’Toole GA, Parsek MR (2003) Alginate is not a significant component of the exopolysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907–7912

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153:1318–1328

    Article  PubMed  CAS  Google Scholar 

  • Yoon SS, Hennigan RF, Hilliard GM, Ochsner UA, Parvatiyar K, Kamani MC, Allen HL, KeKievit TR, Gardener PR, Schwab U, Rowe JJ, Iglewski BH, McDermott TR, Mason RP, Wozniak DJ, Hancock REW, Parsek MR, Noah TL, Boucher RC, Hassett DJ (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tart, A.H., Wozniak, D.J. (2008). Shifting Paradigms in Pseudomonas aeruginosa Biofilm Research. In: Romeo, T. (eds) Bacterial Biofilms. Current Topics in Microbiology and Immunology, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75418-3_9

Download citation

Publish with us

Policies and ethics