Skip to main content

A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in the Magnetic Field: Cylindrical Coordinates

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2007)

Abstract

The boundary problem in cylindrical coordinates for the Schrödinger equation describing a hydrogen-like atom in a strong homogeneous magnetic field is reduced to the problem for a set of the longitudinal equations in the framework of the Kantorovich method. The effective potentials of these equations are given by integrals over transversal variable of a product of transverse basis functions depending on the longitudinal variable as a parameter and their first derivatives with respect to the parameter. A symbolic-numerical algorithm for evaluating the transverse basis functions and corresponding eigenvalues which depend on the parameter, their derivatives with respect to the parameter and corresponded effective potentials is presented. The efficiency and accuracy of the algorithm and of the numerical scheme derived are confirmed by computations of eigenenergies and eigenfunctions for the low-excited states of a hydrogen atom in the strong homogeneous magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dimova, M.G., Kaschiev, M.S., Vinitsky, S.I.: The Kantorovich method for high-accuracy calculations of a hydrogen atom in a strong magnetic field: low-lying excited states. Journal of Physics B: At. Mol. Phys. 38, 2337–2352 (2005)

    Article  Google Scholar 

  2. Chuluunbaatar, O., et al.: Application of Kantorovich method for calculations of a hydrogen atom photoionization in a strong magnetic field. In: Proc. SPIE 6537, 653706–1–18 (2007)

    Google Scholar 

  3. Gusev, A.A., et al.: A symbolic-numerical algorithm for solving the eigenvalue problem for a hydrogen atom in magnetic field. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 205–218. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Vinitsky, S.I., et al.: A symbolic-numerical algorithm for the computation of matrix elements in the parametric eigenvalue problem. Programming and Computer Software 33, 105–116 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chuluunbaatar, O., et al.: KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Comput. Phys. Commun. (submitted, 2007)

    Google Scholar 

  6. Chuluunbaatar, O., et al.: POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a Hydrogen-like atom in a homogeneous magnetic field. Comput. Phys. Commun. (submitted, 2007)

    Google Scholar 

  7. Guest, J.R., Choi, J.-H., Raithel, G.: Decay rates of high-|m| Rydberg states in strong magnetic fields. Phys. Rev. A 68, 022509–1–9 (2003)

    Google Scholar 

  8. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)

    Google Scholar 

  9. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New York (1973)

    MATH  Google Scholar 

  10. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs, New York (1982)

    Google Scholar 

  11. Simola, J., Virtamo, J.: Energy levels of hydrogen atoms in a strong magnetic field. J. Phys. B: At. Mol. Phys. 11, 3309–3322 (1978)

    Article  Google Scholar 

  12. Fridrich, H.: Bound-state spectrum of the hydrogen atom in strong magnetic fields. Phys. Rev. A 26, 1827–1838 (1982)

    Article  Google Scholar 

  13. Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  14. Abrashkevich, A.G., Kaschiev, M.S., Vinitsky, S.I.: A New Method for Soling an Eigenvalue Problem for a System Of Three Coulomb Particles within the Hyperspherical Adiabatic Representation. J. Comp. Phys. 163, 328–348 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Demkov, Y.N., Meyer, J.D.: A sub-atomic microscope, superfocusing in channeling and close encounter atomic and nuclear reactions. Eur. Phys. J. B 42, 361–365 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor G. Ganzha Ernst W. Mayr Evgenii V. Vorozhtsov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chuluunbaatar, O. et al. (2007). A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydrogen Atom in the Magnetic Field: Cylindrical Coordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2007. Lecture Notes in Computer Science, vol 4770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75187-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75187-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75186-1

  • Online ISBN: 978-3-540-75187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics